5,135 research outputs found

    What if θ13\theta_{13} Is Small?

    Full text link
    In the basis where the charged lepton mass matrix is diagonal, the left-handed neutrino mass matrix is invariant under the permutation of the second and third generations if, and only if, the reactor angle θ13\theta_{13} is zero and the atmospheric mixing angle θ23\theta_{23} is maximal. In the presence of the seesaw mechanism, this symmetry leads to an inverted hierarchy, with m3=0m_3=0. This inverted mass spectrum is doubly protected if the right-handed neutrinos also have a 2-3 symmetry

    Effects of Dissipation on Quantum Phase Slippage in Charge Density Wave Systems

    Full text link
    We study the effect of the dissipation on the quantum phase slippage via the creation of ``vortex ring'' in charge density wave (CDW) systems. The dissipation is assumed to come from the interaction with the normal electron near and inside of the vortex core. We describe the CDW by extracted macroscopic degrees of freedom, that is, the CDW phase and the radius of the ``vortex ring'', assume the ohmic dissipation, and investigate the effect in the context of semiclassical approximation. The obtained results are discussed in comparison with experiments. It turns out that the effect of such a dissipation can be neglected in experiments.Comment: 9 pages (revtex), 2 figures, using epsf.st

    Influence of Quantum Hall Effect on Linear and Nonlinear Conductivity in the FISDW States of the Organic Conductor (TMTSF)_2PF_6

    Full text link
    We report a detailed characterization of quantum Hall effect (QHE) influence on the linear and non-linear resistivity tensor in FISDW phases of the organic conductor (TMTSF)2PF6. We show that the behavior at low electric fields, observed for nominally pure single crystals with different values of the resistivity ratio, is fully consistent with a theoretical model, which takes QHE nature of FISDW and residual quasi-particle density associated with different crystal imperfection levels into account. The non-linearity in longitudinal and diagonal resistivity tensor components observed at large electric fields reconciles preceding contradictory results. Our theoretical model offers a qualitatively good explanation of the observed features if a sliding of the density wave with the concomitant destruction of QHE, switched on above a finite electric field, is taken into account.Comment: 8 pages, 6 figures, submitted to EPJ

    Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2

    Get PDF
    The Ras oncogene products regulate the expression of genes in transformed cells, and members of the Ets family of transcription factors have been implicated in this process. To determine which Ets factors are the targets of Ras signaling pathways, the abilities of several Ets factors to activate Ras-responsive enhancer (RRE) reporters in the presence of oncogenic Ras were examined. In transient transfection assay, reporters containing RREs composed of Ets-AP-1 binding sites could be activated 30-fold in NIH 3T3 fibroblasts and 80-fold in the macrophage-like line RAW264 by the combination of Ets1 or Ets2 and Ras but not by several other Ets factors that were tested in the assay. Ets2 and Ras also superactivated an RRE composed of Ets-Ets binding sites, but the Ets-responsive promoter of the c-fms gene was not superactivated. Mutation of a threonine residue to alanine in the conserved amino-terminal regions of Ets1 and Ets2 (threonine 38 and threonine 72, respectively) abrogated the ability of each of these proteins to superactivate reporter gene expression. Phosphoamino acid analysis of radiolabeled Ets2 revealed that Ras induced normally absent threonine-specific phosphorylation of the protein. The Ras-dependent increase in threonine phosphorylation was not observed in Ets2 proteins that had the conserved threonine 72 residue mutated to alanine or serine. These data indicate that Ets1 and Ets2 are specific nuclear targets of Ras signaling events and that phosphorylation of a conserved threonine residue is a necessary molecular component of Ras-mediated activation of these transcription factors

    Magnetothermopower and Nernst effect in unconventional charge density waves

    Full text link
    Recently we have shown that the striking angular dependent magnetoresistance in the low temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4 is consistently described in terms of unconventional charge density wave (UCDW). Here we investigate theoretically the thermoelectric power and the Nernst effect in UDW. The present results account consistently for the recent data of magnetothermopower in alpha-(BEDT-TTF)_2KHg(SCN)_4 obtained by Choi et al. (Phys. Rev. B, 65, 205119 (2002)). This confirms further our identification of LTP in this salt as UCDW. We propose also that the Nernst effect provides a clear signature of UDW.Comment: 4 pages, 4 figure

    Crystallographic and superconducting properties of the fully-gapped noncentrosymmetric 5d-electron superconductors CaMSi3 (M=Ir, Pt)

    Get PDF
    We report crystallographic, specific heat, transport, and magnetic properties of the recently discovered noncentrosymmetric 5d-electron superconductors CaIrSi3 (Tc = 3.6 K) and CaPtSi3 (Tc = 2.3 K). The specific heat suggests that these superconductors are fully gapped. The upper critical fields are less than 1 T, consistent with limitation by conventional orbital depairing. High, non-Pauli-limited {\mu}0 Hc2 values, often taken as a key signature of novel noncentrosymmetric physics, are not observed in these materials because the high carrier masses required to suppress orbital depairing and reveal the violated Pauli limit are not present.Comment: 8 pages, 8 figure

    Zeeman response of d-wave superconductors: Born approximation for impurity and spin-orbit scattering potentials

    Full text link
    The effects of impurity and spin-orbit scattering potentials can strongly affect the Zeeman response of a d-wave superconductor. Here, both the phase diagram and the quasiparticle density of states are calculated within the Born approximation and it is found that the spin-orbit interaction influences in a qualitatively different way the Zeeman response of d-wave and s-wave superconductors.Comment: 19 pages, 6 eps figures, submitted to Physica

    Large-N limit of a magnetic impurity in unconventional density waves

    Full text link
    We investigate the effect of unconventional density wave (UDW) condensate on an Anderson impurity using large-N technique at T=0. In accordance with previous treatments of a Kondo impurity in pseudogap phases, we find that Kondo effect occurs only in a certain range of parameters. The f-electron density of states reflects the influence of UDW at low energies and around the maximum of the density wave gap. The static spin susceptibility diverges at the critical coupling, indicating the transition from strong to weak coupling. In the dynamic spin susceptibility an additional peak appears showing the presence the UDW gap. Predictions concerning non-linear density of states are made. Our results apply to other unconventional condensates such as d-wave superconductors and d-density waves as well.Comment: 9 pages, 7 figure

    Testing CPT Symmetry with Supernova Neutrinos

    Full text link
    Diagnosing core of supernova requires favor-dependent reconstruction of three species of neutrino spectra, \nu_e, \bar{\nu}_{e} and \nu_x (a collective notation for \nu_{\mu}, \bar{\nu}_{\mu}, \nu_{\tau}, and \bar{\nu}_{\tau}). We point out that, assuming the information available, CPT symmetry can be tested with supernova neutrinos. We classify all possible level crossing patterns of neutrinos and antineutrinos into six cases and show that half of them contains only the CPT violating mass and mixing patterns. We discuss how additional informations from terrestrial experiments help identifying CPT violation by narrowing down the possible flux patterns. Although the method may not be good at precision test, it is particularly suited to uncover gross violation of CPT such as different mass patterns of neutrinos and antineutrinos. The power of the method is due to the nature of level crossing in supernova which results in the sensitivity to neutrino mass hierarchy and to the unique characteristics of in situ preparation of both \nu and \bar{\nu} beams. Implications of our discussion to the conventional analyses with CPT conservation are also briefly mentioned.Comment: 24 pages, 4 figures, discussion added on narrowing down flux patterns by terrestrial measuremen

    Impurity scattering in unconventional density waves

    Full text link
    We have investigated the effect of nonmagnetic impurities on the quasi-one-dimensional unconventional density wave (UDW) ground state. The thermodynamics were found to be close to those of a d-wave superconductor in the Born limit. Four different optical conductivity curves were found depending on the direction of the applied electric field and on the wavevector dependence of the gap.Comment: 14 pages, 9 figure
    corecore