5,188 research outputs found

    Particle Creation by a Moving Boundary with Robin Boundary Condition

    Full text link
    We consider a massless scalar field in 1+1 dimensions satisfying a Robin boundary condition (BC) at a non-relativistic moving boundary. We derive a Bogoliubov transformation between input and output bosonic field operators, which allows us to calculate the spectral distribution of created particles. The cases of Dirichlet and Neumann BC may be obtained from our result as limiting cases. These two limits yield the same spectrum, which turns out to be an upper bound for the spectra derived for Robin BC. We show that the particle emission effect can be considerably reduced (with respect to the Dirichlet/Neumann case) by selecting a particular value for the oscillation frequency of the boundary position

    Qualidade de sementes forrageiras de clima temperado.

    Get PDF
    Atual contexto do setor produtivo; Prejuízos decorrentes da baixa qualidade de sementes; Atributos da qualidade de sementes forrageiras.bitstream/item/61500/1/DT-119.pd

    Topological Properties from Einstein's Equations?

    Full text link
    In this work we propose a new procedure for to extract global information of a space-time. We considered a space-time immersed in a higher dimensional space and we formulate the equations of Einstein through of the Frobenius conditions to immersion. Through of an algorithm and the implementation into algebraic computing system we calculate normal vectors from the immersion to find out the second fundamental form. We make a application for space-time with spherical symmetry and static. We solve the equations of Einstein to the vacuum and we obtain space-times with different topologies.Comment: 7 pages, accepted for publication in Int. J. Mod. Phys.

    Embedding Versus Immersion in General Relativity

    Full text link
    We briefly discuss the concepts of immersion and embedding of space-times in higher-dimensional spaces. We revisit the classical work by Kasner in which he constructs a model of immersion of the Schwarzschild exterior solution into a six-dimensional pseudo-Euclidean manifold. We show that, from a physical point of view, this model is not entirely satisfactory since the causal structure of the immersed space-time is not preserved by the immersion.Comment: 5 page

    Dynamical Casimir effect with cylindrical waveguides

    Full text link
    I consider the quantum electromagnetic field in a coaxial cylindrical waveguide, such that the outer cylindrical surface has a time-dependent radius. The field propagates parallel to the axis, inside the annular region between the two cylindrical surfaces. When the mechanical frequency and the thickness of the annular region are small enough, only Transverse Electromagnetic (TEM) photons may be generated by the dynamical Casimir effect. The photon emission rate is calculated in this regime, and compared with the case of parallel plates in the limit of very short distances between the two cylindrical surfaces. The proximity force approximation holds for the transition matrix elements in this limit, but the emission rate scales quadratically with the mechanical frequency, as opposed to the cubic dependence for parallel plates.Comment: 6 page

    On the Nature of the Cosmological Constant Problem

    Full text link
    General relativity postulates the Minkowski space-time to be the standard flat geometry against which we compare all curved space-times and the gravitational ground state where particles, quantum fields and their vacuum states are primarily conceived. On the other hand, experimental evidences show that there exists a non-zero cosmological constant, which implies in a deSitter space-time, not compatible with the assumed Minkowski structure. Such inconsistency is shown to be a consequence of the lack of a application independent curvature standard in Riemann's geometry, leading eventually to the cosmological constant problem in general relativity. We show how the curvature standard in Riemann's geometry can be fixed by Nash's theorem on locally embedded Riemannian geometries, which imply in the existence of extra dimensions. The resulting gravitational theory is more general than general relativity, similar to brane-world gravity, but where the propagation of the gravitational field along the extra dimensions is a mathematical necessity, rather than being a a postulate. After a brief introduction to Nash's theorem, we show that the vacuum energy density must remain confined to four-dimensional space-times, but the cosmological constant resulting from the contracted Bianchi identity is a gravitational contribution which propagates in the extra dimensions. Therefore, the comparison between the vacuum energy and the cosmological constant in general relativity ceases to be. Instead, the geometrical fix provided by Nash's theorem suggests that the vacuum energy density contributes to the perturbations of the gravitational field.Comment: LaTex, 5 pages no figutres. Correction on author lis
    corecore