4,177 research outputs found
Dynamical Casimir effect with cylindrical waveguides
I consider the quantum electromagnetic field in a coaxial cylindrical
waveguide, such that the outer cylindrical surface has a time-dependent radius.
The field propagates parallel to the axis, inside the annular region between
the two cylindrical surfaces. When the mechanical frequency and the thickness
of the annular region are small enough, only Transverse Electromagnetic (TEM)
photons may be generated by the dynamical Casimir effect. The photon emission
rate is calculated in this regime, and compared with the case of parallel
plates in the limit of very short distances between the two cylindrical
surfaces. The proximity force approximation holds for the transition matrix
elements in this limit, but the emission rate scales quadratically with the
mechanical frequency, as opposed to the cubic dependence for parallel plates.Comment: 6 page
Quantum radiation in a plane cavity with moving mirrors
We consider the electromagnetic vacuum field inside a perfect plane cavity
with moving mirrors, in the nonrelativistic approximation. We show that low
frequency photons are generated in pairs that satisfy simple properties
associated to the plane geometry. We calculate the photon generation rates for
each polarization as functions of the mechanical frequency by two independent
methods: on one hand from the analysis of the boundary conditions for moving
mirrors and with the aid of Green functions; and on the other hand by an
effective Hamiltonian approach. The angular and frequency spectra are discrete,
and emission rates for each allowed angular direction are obtained. We discuss
the dependence of the generation rates on the cavity length and show that the
effect is enhanced for short cavity lengths. We also compute the dissipative
force on the moving mirrors and show that it is related to the total radiated
energy as predicted by energy conservation.Comment: 17 pages, 1 figure, published in Physical Review
Inertial forces in the Casimir effect with two moving plates
We combine linear response theory and dimensional regularization in order to
derive the dynamical Casimir force in the low frequency regime. We consider two
parallel plates moving along the normal direction in dimensional space. We
assume the free-space values for the mass of each plate to be known, and obtain
finite, separation-dependent mass corrections resulting from the combined
effect of the two plates. The global mass correction is proportional to the
static Casimir energy, in agreement with Einstein's law of equivalence between
mass and energy for stressed rigid bodies.Comment: 9 pages, 1 figure; title and abstract changed; to appear in Physical
Review
Ideally embedded space-times
Due to the growing interest in embeddings of space-time in higher-dimensional
spaces we consider a specific type of embedding. After proving an inequality
between intrinsically defined curvature invariants and the squared mean
curvature, we extend the notion of ideal embeddings from Riemannian geometry to
the indefinite case. Ideal embeddings are such that the embedded manifold
receives the least amount of tension from the surrounding space. Then it is
shown that the de Sitter spaces, a Robertson-Walker space-time and some
anisotropic perfect fluid metrics can be ideally embedded in a five-dimensional
pseudo-Euclidean space.Comment: layout changed and typos corrected; uses revtex
Dust Emission from Active Galactic Nuclei
Unified schemes of active galactic nuclei (AGN) require an obscuring dusty
torus around the central source, giving rise to Seyfert 1 line spectrum for
pole-on viewing and Seyfert 2 characteristics in edge-on sources. Although the
observed IR is in broad agreement with this scheme, the behavior of the 10
micron silicate feature and the width of the far-IR emission peak remained
serious problems in all previous modeling efforts. We show that these problems
find a natural explanation if the dust is contained in about 5-10 clouds along
radial rays through the torus. The spectral energy distributions (SED) of both
type 1 and type 2 sources are properly reproduced from different viewpoints of
the same object if the visual optical depth of each cloud is larger than about
60 and the clouds' mean free path increases roughly in proportion to radial
distance.Comment: 11 pages, submitted to ApJ Letter
Lateral Casimir-Polder force with corrugated surfaces
We derive the lateral Casimir-Polder force on a ground state atom on top of a
corrugated surface, up to first order in the corrugation amplitude. Our
calculation is based on the scattering approach, which takes into account
nonspecular reflections and polarization mixing for electromagnetic quantum
fluctuations impinging on real materials. We compare our first order exact
result with two commonly used approximation methods. We show that the proximity
force approximation (large corrugation wavelengths) overestimates the lateral
force, while the pairwise summation approach underestimates it due to the
non-additivity of dispersion forces. We argue that a frequency shift
measurement for the dipolar lateral oscillations of cold atoms could provide a
striking demonstration of nontrivial geometrical effects on the quantum vacuum.Comment: 12 pages, 6 figures, contribution to QFEXT07 proceeding
Traumatologia renal nos HUC: experiência de treze anos
Os autores fazem uma revisão da casuística de traumatologia renal da sua instituição. Analisam-se 152 traumatismos renais ocorridos em 13 anos avaliando-se a classificação, mecanismo causal, etiologia, sintomatologia, estudo imagiológico, lesões associadas, tratamento, complicações e evolução
Expression Of Mcl-1 And Ki-67 In Papillary Thyroid Carcinomas
Studying molecules that are differentially expressed in cancers as well as benign and normal tissues is crucial for identifying novel bio-markers for cancer immunotherapy. This study aimed to investigate the clinical utility of the immunochemical expression of the proliferative cell marker Ki-67 and the apoptotic blocker Mcl-1 in papillary thyroid carcinoma (PTC). Methods: We built a tissue microarray with 282 thyroid specimens. There were 59 PTCs including 35 classic (CPTC), 3 tall cell (TCPTC) and 21 follicular variants (FVPTC); 79 benign thyroid diseases (22 follicular adenomas; 57 adenomatoid hyperplasia); 33 Hashimoto's thyroiditis (HT) specimens; and 111 normal thyroid tissues. Clinical history and ultrasound data were retrospectively obtained by chart review. Results: Mcl-1 overexpression was evident in 66.7% of the PTC tissues compared to 32% of the benign thyroid diseases. Mcl-1 strong staining distinguished benign from malignant thyroid lesions (sensitivity = 61.3%; specificity = 72.8%; negative predictive value, NPV = 68%; positive predictive value, PPV = 66.7% and 67.5% accuracy). Positive nuclear Ki-67 staining was observed in 34% of PTCs vs. 19% of thyroid adenomas (P = 0.031). Strong Mcl-1 and Ki-67 co-expression was identified in 57.5% of PTCs with a higher PPV (75.8%). Mcl-1 and Ki-67 expression was not associated with any clinicopathological feature of malignancy. No deaths occurred during the follow-up. Conclusions: Mcl-1 immunochemical overexpression allowed differentiating low-risk PTC from the benign thyroid lesions. We suggest that Mcl-1 expression may help differentiate follicular patterned thyroid lesions. The influence of the Mcl-1 expression on several features of tumor aggressiveness has to be studied in large series of high-risk thyroid carcinomas.124420921
Recommended from our members
Start-ups: Integrating product, market and supply chain decisions to build-up market entry capabilities
- …