732 research outputs found

    Epigenetic regulation of cyclooxygenase-2 by methylation of c8orf4 in pulmonary fibrosis

    Get PDF
    Fibroblasts derived from the lungs of patients with idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc) produce low levels of prostaglandin (PG) E(2), due to a limited capacity to up-regulate cyclooxygenase-2 (COX-2). This deficiency contributes functionally to the fibroproliferative state, however the mechanisms responsible are incompletely understood. In the present study, we examined whether the reduced level of COX-2 mRNA expression observed in fibrotic lung fibroblasts is regulated epigenetically. The DNA methylation inhibitor, 5-aza-2′-deoxycytidine (5AZA) restored COX-2 mRNA expression by fibrotic lung fibroblasts dose dependently. Functionally, this resulted in normalization of fibroblast phenotype in terms of PGE(2) production, collagen mRNA expression and sensitivity to apoptosis. COX-2 methylation assessed by bisulfite sequencing and methylation microarrays was not different in fibrotic fibroblasts compared with controls. However, further analysis of the methylation array data identified a transcriptional regulator, chromosome 8 open reading frame 4 (thyroid cancer protein 1, TC-1) (c8orf4), which is hypermethylated and down-regulated in fibrotic fibroblasts compared with controls. siRNA knockdown of c8orf4 in control fibroblasts down-regulated COX-2 and PGE(2) production generating a phenotype similar to that observed in fibrotic lung fibroblasts. Chromatin immunoprecipitation demonstrated that c8orf4 regulates COX-2 expression in lung fibroblasts through binding of the proximal promoter. We conclude that the decreased capacity of fibrotic lung fibroblasts to up-regulate COX-2 expression and COX-2-derived PGE(2) synthesis is due to an indirect epigenetic mechanism involving hypermethylation of the transcriptional regulator, c8orf4

    Glioblastoma Subclasses Can Be Defined by Activity among Signal Transduction Pathways and Associated Genomic Alterations

    Get PDF
    Glioblastoma multiforme (GBM) is an umbrella designation that includes a heterogeneous group of primary brain tumors. Several classification strategies of GBM have been reported, some by clinical course and others by resemblance to cell types either in the adult or during development. From a practical and therapeutic standpoint, classifying GBMs by signal transduction pathway activation and by mutation in pathway member genes may be particularly valuable for the development of targeted therapies.We performed targeted proteomic analysis of 27 surgical glioma samples to identify patterns of coordinate activation among glioma-relevant signal transduction pathways, then compared these results with integrated analysis of genomic and expression data of 243 GBM samples from The Cancer Genome Atlas (TCGA). In the pattern of signaling, three subclasses of GBM emerge which appear to be associated with predominance of EGFR activation, PDGFR activation, or loss of the RAS regulator NF1. The EGFR signaling class has prominent Notch pathway activation measured by elevated expression of Notch ligands, cleaved Notch receptor, and downstream target Hes1. The PDGF class showed high levels of PDGFB ligand and phosphorylation of PDGFRbeta and NFKB. NF1-loss was associated with lower overall MAPK and PI3K activation and relative overexpression of the mesenchymal marker YKL40. These three signaling classes appear to correspond with distinct transcriptomal subclasses of primary GBM samples from TCGA for which copy number aberration and mutation of EGFR, PDGFRA, and NF1 are signature events.Proteomic analysis of GBM samples revealed three patterns of expression and activation of proteins in glioma-relevant signaling pathways. These three classes are comprised of roughly equal numbers showing either EGFR activation associated with amplification and mutation of the receptor, PDGF-pathway activation that is primarily ligand-driven, or loss of NF1 expression. The associated signaling activities correlating with these sentinel alterations provide insight into glioma biology and therapeutic strategies

    Defining genetic risk factors for scleroderma-associated interstitial lung disease

    Get PDF
    Although several genetic associations with scleroderma (SSc) are defined, very little is known on genetic susceptibility to SSc-associated interstitial lung disease (SSc-ILD). A number of common polymorphisms have been associated with SSc-ILD, but most have not been replicated in separate populations. Four SNPs in IRF5, and one in each of STAT4, CD226 and IRAK1, selected as having been previously the most consistently associated with SSc-ILD, were genotyped in 612 SSc patients, of European descent, of whom 394 had ILD. The control population (n = 503) comprised individuals of European descent from the 1000 Genomes Project. After Bonferroni correction, two of the IRF5 SNPs, rs2004640 (OR (95% CI)1.30 (1.10–1.54), p^{corr} = 0.015) and rs10488631 (OR 1.48 (1.14–1.92), p^{corr} = 0.022), and the STAT4 SNP rs7574865 (OR 1.43 (1.18–1.73), p^{corr} = 0.0015) were significantly associated with SSc compared with controls. However, none of the SNPs were significantly different between patients with SSc-ILD and controls. Two SNPs in IRF5, rs10488631 (OR 1.72 (1.24–2.39), p^{corr} = 0.0098), and rs2004640 (OR 1.39 (1.11–1.75), p^{corr} = 0.03), showed a significant difference in allele frequency between controls and patients without ILD, as did STAT4 rs7574865 (OR 1.86 (1.45–2.38), p^{corr} = 6.6 × 10^{-6}). A significant difference between SSc with and without ILD was only observed for STAT4 rs7574865, being less frequent in patients with ILD (OR 0.66 (0.51–0.85), p^{corr} = 0.0084). In conclusion, IRF5 rs2004640 and rs10488631, and STAT4 rs7574865 were significantly associated with SSc as a whole. Only STAT4 rs7574865 showed a significant difference in allele frequency in SSc-ILD, with the T allele being protective against ILD

    Absence of system xc⁻ on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis

    Get PDF
    Background: Multiple sclerosis (MS) is an autoimmune demyelinating disease that affects the central nervous system (CNS), leading to neurodegeneration and chronic disability. Accumulating evidence points to a key role for neuroinflammation, oxidative stress, and excitotoxicity in this degenerative process. System x(c)- or the cystine/glutamate antiporter could tie these pathological mechanisms together: its activity is enhanced by reactive oxygen species and inflammatory stimuli, and its enhancement might lead to the release of toxic amounts of glutamate, thereby triggering excitotoxicity and neurodegeneration. Methods: Semi-quantitative Western blotting served to study protein expression of xCT, the specific subunit of system x(c)-, as well as of regulators of xCT transcription, in the normal appearing white matter (NAWM) of MS patients and in the CNS and spleen of mice exposed to experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS. We next compared the clinical course of the EAE disease, the extent of demyelination, the infiltration of immune cells and microglial activation in xCT-knockout (xCT(-/-)) mice and irradiated mice reconstituted in xCT(-/-) bone marrow (BM), to their proper wild type (xCT(+/+)) controls. Results: xCT protein expression levels were upregulated in the NAWM of MS patients and in the brain, spinal cord, and spleen of EAE mice. The pathways involved in this upregulation in NAWM of MS patients remain unresolved. Compared to xCT(+/+) mice, xCT(-/-) mice were equally susceptible to EAE, whereas mice transplanted with xCT(-/-) BM, and as such only exhibiting loss of xCT in their immune cells, were less susceptible to EAE. In none of the above-described conditions, demyelination, microglial activation, or infiltration of immune cells were affected. Conclusions: Our findings demonstrate enhancement of xCT protein expression in MS pathology and suggest that system x(c)- on immune cells invading the CNS participates to EAE. Since a total loss of system x(c)- had no net beneficial effects, these results have important implications for targeting system x(c)- for treatment of MS

    Genome-Wide Gene Amplification during Differentiation of Neural Progenitor Cells In Vitro

    Get PDF
    DNA sequence amplification is a phenomenon that occurs predictably at defined stages during normal development in some organisms. Developmental gene amplification was first described in amphibians during gametogenesis and has not yet been described in humans. To date gene amplification in humans is a hallmark of many tumors. We used array-CGH (comparative genomic hybridization) and FISH (fluorescence in situ hybridization) to discover gene amplifications during in vitro differentiation of human neural progenitor cells. Here we report a complex gene amplification pattern two and five days after induction of differentiation of human neural progenitor cells. We identified several amplified genes in neural progenitor cells that are known to be amplified in malignant tumors. There is also a striking overlap of amplified chromosomal regions between differentiating neural progenitor cells and malignant tumor cells derived from astrocytes. Gene amplifications in normal human cells as physiological process has not been reported yet and may bear resemblance to developmental gene amplifications in amphibians and insects

    Pulmonary hypertension in interstitial lung disease: Limitations of echocardiography compared to cardiac catheterization

    Get PDF
    BACKGROUND AND OBJECTIVE: In interstitial lung disease (ILD), pulmonary hypertension (PH) is a major adverse prognostic determinant. Transthoracic echocardiography (TTE) is the most widely used tool when screening for PH, although discordance between TTE and right heart catheter (RHC) measured pulmonary haemodynamics is increasingly recognized. We evaluated the predictive utility of the updated European Society of Cardiology/European Respiratory Society (ESC/ERS) TTE screening recommendations against RHC testing in a large, well-characterized ILD cohort. METHODS: Two hundred and sixty-five consecutive patients with ILD and suspected PH underwent comprehensive assessment, including RHC, between 2006 and 2012. ESC/ERS recommended tricuspid regurgitation (TR) velocity thresholds for assigning high (>3.4 m/s), intermediate (2.9-3.4 m/s) and low (3.4 m/s, and excluded PH in 60% of ILD subjects with a TR velocity <2.8 m/s. Thus, the ESC/ERS guidelines misclassified 40% of subjects as 'low probability' of PH, when PH was confirmed on subsequent RHC. Evaluating alternative TR velocity thresholds for assigning a low probability of PH did not significantly improve the ability of TR velocity to exclude a diagnosis of PH. CONCLUSION: In patients with ILD and suspected PH, currently recommended ESC/ERS TR velocity screening thresholds were associated with a high positive predictive value (86%) for confirming PH, but were of limited value in excluding PH, with 40% of patients misclassified as low probability when PH was confirmed at subsequent RHC

    Muscle stimulation in advanced idiopathic pulmonary fibrosis: A randomised placebo-controlled feasibility study

    Get PDF
    Objectives To assess the acceptability of neuromuscular electrical stimulation (NMES) of the quadriceps muscles in people with idiopathic pulmonary fibrosis (IPF) and to identify whether a future definitive trial is feasible. Design A randomised, parallel, two-group, participant and assessor-blinded, placebo-controlled feasibility trial with embedded qualitative interviews. Setting Outpatient department, Royal Brompton and Harefield Hospitals. Participants Twenty-two people with IPF: median (25th, 75th centiles) age 76 (74, 82) years, forced vital capacity 62 (50, 75) % predicted, 6min walk test distance 289 (149, 360) m. Interventions Usual care (home-based exercise, weekly telephone support, breathlessness management leaflet) with either placebo or active NMES for 6weeks, with follow-up at 6 and 12 weeks. Primary outcome measures Feasibility of recruitment and retention, treatment uptake and adherence, outcome assessments, participant and outcome assessor blinding and adverse events related to interventions. Secondary outcome measures Outcome measures with potential to be primary or secondary outcomes in a definitive clinical trial. In addition, purposively sampled participants were interviewed to capture their experiences and acceptability of the trial. Results Out of 364 people screened, 23 were recruited: 11 were allocated to each group and one was withdrawn prior to randomisation. Compared with the control group, a greater proportion of the intervention group completed the intervention, remained in the trial blinded to group allocation and experienced intervention-related adverse events. Assessor blinding was maintained. The secondary outcome measures were feasible with most missing data associated with the accelerometer. Small participant numbers precluded identification of an outcome measure suitable for a definitive trial. Qualitative findings demonstrated that trial process and active NMES were acceptable but there were concerns about the credibility of placebo NMES. Conclusions Primarily owing to recruitment difficulties, a definitive trial using the current protocol to evaluate NMES in people with IPF is not feasible. Trial registration number NCT03499275.British Lung Foundation IPF Project Grant (grant number IPF/PG/17-15

    Knockdown of interferon-induced transmembrane protein 1 (IFITM1) inhibits proliferation, migration, and invasion of glioma cells

    Get PDF
    Interferon-induced transmembrane protein 1 (IFITM1) has recently been identified as a new molecular marker in human colorectal cancer. However, its role in glioma carcinogenesis is not known. In this study, we demonstrated that suppression of IFITM1 expression significantly inhibited proliferation of glioma cells in a time-dependent manner. The growth inhibitory effect was mediated by cell cycle arrest. Furthermore, IFITM1 knockdown significantly inhibited migration and invasion of glioma cells, which could be attributed to decreased expression and enzymatic activity of matrix metalloproteinase 9. Taken together, these results suggest that IFITM1 is a potential therapeutic target for gliomas
    corecore