6 research outputs found

    A Review of the Potential Benefits of Plants Producing Berries in Skin Disorders

    Get PDF
    During the last 30 years, berries have gained great attention as functional food against several risk factors in chronic diseases. The number of related publications on Pubmed rose from 1000 items in 1990 to more than 11,000 in 2019. Despite the fact that a common and clear definition of "berries" is not shared among different scientific areas, the phytochemical pattern of these fruits is mainly characterized by anthocyanins, flavanols, flavonols, and tannins, which showed antioxidant and anti-inflammatory properties in humans. Skin insults, like wounds, UV rays, and excessive inflammatory responses, may lead to chronic dermatological disorders, conditions often characterized by long-term treatments. The application of berries for skin protection is sustained by long traditional use, but many observations still require a clear pharmacological validation. This review summarizes the scientific evidence, published on EMBASE, MEDLINE, and Scholar, to identify extraction methods, way of administration, dose, and mechanism of action of berries for potential dermatological treatments. Promising in vitro and in vivo evidence of Punica granatum L. and Vitis vinifera L. supports wound healing and photoprotection, while Schisandra chinensis (Turcz.) Baill. and Vaccinium spp. showed clear immunomodulatory effects. Oral or topical administrations of these berries justify the evaluation of new translational studies to validate their efficacy in humans

    Effect of hypoxia on gene expression in cell populations involved in wound healing

    Get PDF
    Wound healing is a complex process regulated by multiple signals and consisting of several phases known as haemostasis, inflammation, proliferation, and remodelling. Keratinocytes, endothelial cells, macrophages, and fibroblasts are the major cell populations involved in wound healing process. Hypoxia plays a critical role in this process since cells sense and respond to hypoxic conditions by changing gene expression. This study assessed the in vitro expression of 77 genes involved in angiogenesis, metabolism, cell growth, proliferation and apoptosis in human keratinocytes (HaCaT), microvascular endothelial cells (HMEC-1), differentiated macrophages (THP-1), and dermal fibroblasts (HDF). Results indicated that the gene expression profiles induced by hypoxia were cell-type specific. In HMEC-1 and differentiated THP-1, most of the genes modulated by hypoxia encode proteins involved in angiogenesis or belonging to cytokines and growth factors. In HaCaT and HDF, hypoxia mainly affected the expression of genes encoding proteins involved in cell metabolism. This work can help to enlarge the current knowledge about the mechanisms through which a hypoxic environment influences wound healing processes at the molecular level

    Dietary Cameroonian Plants Exhibit Anti-Inflammatory Activity in Human Gastric Epithelial Cells

    No full text
    In Cameroon, local plants are traditionally used as remedies for a variety of ailments. In this regard, several papers report health benefits of Cameroonian spices, which include antioxidant and anti-microbial properties, whereas gastric anti-inflammatory activities have never been previously considered. The present study investigates the antioxidant and anti-inflammatory activities of hydro-alcoholic extracts of eleven Cameroonian spices in gastric epithelial cells (AGS and GES-1 cells). The extracts showed antioxidant properties in a cell-free system and reduced H2O2-induced ROS generation in gastric epithelial cells. After preliminary screening on TNF-induced NF-B driven transcription, six extracts from Xylopia parviflora, Xylopia aethiopica, Tetrapleura tetraptera, Dichrostachys glomerata, Aframomum melegueta, and Aframomum citratum were selected for further studies focusing on the anti-inflammatory activity. The extracts reduced the expression of some NF-B-dependent pro-inflammatory mediators strictly involved in the gastric inflammatory process, such as IL-8, IL-6, and enzymes such as PTGS2 (COX-2), without aecting PTGS1 (COX-1). In conclusion, the selected extracts decreased pro-inflammatory markers by inhibiting the NF-B signaling in gastric cells, justifying, in part, the traditional use of these spices. Other molecular mechanisms cannot be excluded, and further studies are needed to better clarify their biological activities at the gastric level
    corecore