69 research outputs found

    Characterization of the linkage disequilibrium structure and identification of tagging-SNPs in five DNA repair genes

    Get PDF
    BACKGROUND: Characterization of the linkage disequilibrium (LD) structure of candidate genes is the basis for an effective association study of complex diseases such as cancer. In this study, we report the LD and haplotype architecture and tagging-single nucleotide polymorphisms (tSNPs) for five DNA repair genes: ATM, MRE11A, XRCC4, NBS1 and RAD50. METHODS: The genes ATM, MRE11A, and XRCC4 were characterized using a panel of 94 unrelated female subjects (47 breast cancer cases, 47 controls) obtained from high-risk breast cancer families. A similar LD structure and tSNP analysis was performed for NBS1 and RAD50, using publicly available genotyping data. We studied a total of 61 SNPs at an average marker density of 10 kb. Using a matrix decomposition algorithm, based on principal component analysis, we captured >90% of the intragenetic variation for each gene. RESULTS: Our results revealed that three of the five genes did not conform to a haplotype block structure (MRE11A, RAD50 and XRCC4). Instead, the data fit a more flexible LD group paradigm, where SNPs in high LD are not required to be contiguous. Traditional haplotype blocks assume recombination is the only dynamic at work. For ATM, MRE11A and XRCC4 we repeated the analysis in cases and controls separately to determine whether LD structure was consistent across breast cancer cases and controls. No substantial difference in LD structures was found. CONCLUSION: This study suggests that appropriate SNP selection for an association study involving candidate genes should allow for both mutation and recombination, which shape the population-level genomic structure. Furthermore, LD structure characterization in either breast cancer cases or controls appears to be sufficient for future cancer studies utilizing these genes

    The Thyroid Hormone Receptors Modulate the Skin Response to Retinoids

    Get PDF
    [Background]: Retinoids play an important role in skin homeostasis and when administered topically cause skin hyperplasia, abnormal epidermal differentiation and inflammation. Thyroidal status in humans also influences skin morphology and function and we have recently shown that the thyroid hormone receptors (TRs) are required for a normal proliferative response to 12-O-tetradecanolyphorbol-13-acetate (TPA) in mice. [Methodology/Principal Findings]: We have compared the epidermal response of mice lacking the thyroid hormone receptor binding isoforms TRα1 and TRβ to retinoids and TPA. Reduced hyperplasia and a decreased number of proliferating cells in the basal layer in response to 9-cis-RA and TPA were found in the epidermis of TR-deficient mice. Nuclear levels of proteins important for cell proliferation were altered, and expression of keratins 5 and 6 was also reduced, concomitantly with the decreased number of epidermal cell layers. In control mice the retinoid (but not TPA) induced parakeratosis and diminished expression of keratin 10 and loricrin, markers of early and terminal epidermal differentiation, respectively. This reduction was more accentuated in the TR deficient animals, whereas they did not present parakeratosis. Therefore, TRs modulate both the proliferative response to retinoids and their inhibitory effects on skin differentiation. Reduced proliferation, which was reversed upon thyroxine treatment, was also found in hypothyroid mice, demonstrating that thyroid hormone binding to TRs is required for the normal response to retinoids. In addition, the mRNA levels of the pro-inflammatory cytokines TNFα and IL-6 and the chemotactic proteins S1008A and S1008B were significantly elevated in the skin of TR knock-out mice after TPA or 9-cis-RA treatment and immune cell infiltration was also enhanced. [Conclusions/significance]: Since retinoids are commonly used for the treatment of skin disorders, these results demonstrating that TRs regulate skin proliferation, differentiation and inflammation in response to these compounds could have not only physiological but also therapeutic implications.This work was supported by grants BFU2007-62402 and SAF2008-00121 from Ministerio de Ciencia e Innovación, RD06/0020/0036 and RD06/0020/0029 from the Fondo de Investigaciones Sanitarias and by the European Grant CRESCENDO (FP-018652).Peer reviewe

    Epidemiologia do carcinoma basocelular

    Full text link

    SHH (Sonic hedgehog)

    Get PDF
    Review on SHH (Sonic hedgehog), with data on DNA, on the protein encoded, and where the gene is implicated

    CD24 (heat stable antigen, nectadrin), a novel keratinocyte differentiation marker, is preferentially expressed in areas of the hair follicle containing the colony-forming cells

    No full text
    We have isolated, by subtractive and differential hybridization from a library constructed from keratinocyte colony-forming cells (K-CFCs), a cDNA coding for the rat CD24 (nectadrin, heat stable antigen). CD24, a glycoprotein thought to be involved in cell-cell adhesion and signalling, is highly expressed in keratinocytes located in the bulge area of the rat vibrissa which contains the most K-CFCs. CD24 is also expressed in the outer epithelial sheath of human hair follicles and in glabrous epidermis. However, its expression is not restricted to K-CFCs as demonstrated by cell sorting experiments, and it is thus not a specific marker of clonogenic keratinocytes. Rather, its preferential distribution in keratinocytes located in the most innervated area of the rat vibrissal follicle, i.e., the bulge, suggests that is function could be related to the tactile role of the hair follicle

    Nucleotide Excision Repair and Related Human Diseases

    No full text
    International audienc

    Cytokeratins and Dermatology

    No full text
    corecore