6 research outputs found

    Linking predator and prey behaviour: contrasts between Antarctic fur seals and macaroni penguins at South Georgia

    No full text
    Antarctic fur seals Arctocephalus gazella and macaroni penguins Eudyptes chrysolophus are the two main land-based krill Euphausia superba consumers in the northern Scotia Sea. Using a combination of concurrent at-sea (predator observations, net hauls and multi-frequency acoustics), and land-based (animal tracking and diet analysis) techniques, we examined variability in the foraging ecology of these sympatric top predators during the austral summer and autumn of 2004. Krill availability derived from acoustic surveys was low during summer, increasing in autumn. During the breeding season, krill occurred in 80% of fur seal diet samples, with fish remains in 37% of samples. Penguin diets contained the highest proportion of fish in over 20 years of routine monitoring (46% by mass; particularly the myctophid Electrona antarctica), with krill (33%) and amphipods (Themisto gaudichaudii; 21%) also occurring. When constrained by the need to return and feed their offspring both predator species foraged to the northwest of South Georgia, consistent with an area of high macrozooplankton biomass, but fur seals were apparently more successful at exploiting krill. When unconstrained by chick-rearing (during March) penguins foraged close to the Shag Rocks shelf-break, probably exploiting the high daytime biomass of fish in this area. Penguins and seals are able to respond differently to periods of reduced krill abundance (in terms of variability in diet and foraging behaviour), without detriment to the breeding success of either species. This highlights the importance of myctophid fish as an alternative trophic pathway for land-based predators in the Scotia Sea ecosystem

    The Scientific Explorations for Deep-Sea Fishes in Brazil: The Known Knowns, the Known Unknowns, and the Unknown Unknowns

    No full text
    The deep sea is the largest and one of the most extreme environments on Earth. It is estimated that 10–15% of all fish species are dwelling in the deep sea, most of which have unique morphological and physiological adaptations. Biological expeditions to sample the deep ocean off Brazil started with the British HMS Challenger Expedition (1872–1876), followed by a few fishery stations made by the German RV Ernst Haeckel (1966) and the North-American MIV Oregon II (1957–1975), the cruises of the French RVs Marion Dufresne (1987) and Thalassa (1999, 2000), the Brazilian RV Atlñntico Sul (1996–1999), the FV Diadorim and FV Soloncy Moura (1996–2002), OSB Astro Garoupa (2003), and, more recently, the American RV Luke Thomas and Seward Johnson (2009, 2011), the French RV Antea (2015, 2017), and the Brazilian RV Alpha Crucis. A total of 712 species of deep-sea fishes were recorded, including five species of Myxini, six species of Holocephali, 81 species of Elasmobrachii, and 620 species of Actinopteri. As in other parts of the world, the Brazilian deep-sea ichthyofauna struggles under severe anthropogenic impacts caused by the commercial fishing, and the extraction of oil and gas. The deep ocean is a delicate environment and its recovery is considerably slower than an equivalent in shallow water habitat. Therefore, increasing the research efforts is needed to avoid that part of its diversity disappear without our accurate knowledge.https://nsuworks.nova.edu/occ_facbooks/1102/thumbnail.jp
    corecore