1,342 research outputs found

    Amplitude control of quantum interference

    Full text link
    Usually, the oscillations of interference effects are controlled by relative phases. We show that varying the amplitudes of quantum waves, for instance by changing the reflectivity of beam splitters, can also lead to quantum oscillations and even to Bell violations of local realism. We first study theoretically a generalization of the Hong-Ou-Mandel experiment to arbitrary source numbers and beam splitter transmittivity. We then consider a Bell type experiment with two independent sources, and find strong violations of local realism for arbitrarily large source number NN; for small NN, one operator measures essentially the relative phase of the sources and the other their intensities. Since, experimentally, one can measure the parity of the number of atoms in an optical lattice more easily than the number itself, we assume that the detectors measure parity.Comment: 4 pages; 4 figure

    Comment on "On Mach's critique of Newton and Copernicus"

    Full text link
    Hartman and Nissim-Sabat have argued that Mach's idea of the relativity of rotational motion suffers from internal inconsistencies and leads to a contradiction that there cannot be a stationary bucket in a rotating universe. They also claimed that non-inertial electromagnetic and stellar aberration observations can distinguish between a rotating and a stationary universe, whereas according to Mach there cannot be any observable way to distinguish these two cases. We contest these objections.Comment: Six pages, to appear in AJ

    Variation of the speed of light with temperature of the expanding universe

    Full text link
    From an extended relativistic dynamics for a particle moving in a cosmic background field with temperature T, we aim to obtain the speed of light with an explicit dependence on the background temperature of the universe. Although finding the speed of light in the early universe much larger than its current value, our approach does not violate the postulate of special relativity. Moreover, it is shown that the high value of the speed of light in the early universe was drastically decreased before the beginning of the inflationary period. So we are led to conclude that the theory of varying speed of light should be questioned as a possible solution of the horizon problem.Comment: 3 pages and 1 figure; Phys. Rev. D86, 027703 (2012

    Cosmological gravitomagnetism and Mach's principle

    Full text link
    The spin axes of gyroscopes experimentally define local non-rotating frames. But what physical cause governs the time-evolution of gyroscope axes? We consider linear perturbations of Friedmann-Robertson-Walker cosmologies with k=0. We ask: Will cosmological vorticity perturbations exactly drag the spin axes of gyroscopes relative to the directions of geodesics to quasars in the asymptotic unperturbed FRW space? Using Cartan's formalism with local orthonormal bases we cast the laws of linear cosmological gravitomagnetism into a form showing the close correspondence with the laws of ordinary magnetism. Our results, valid for any equation of state for cosmological matter, are: 1) The dragging of a gyroscope axis by rotational perturbations of matter beyond the Hubble-dot radius from the gyroscope is exponentially suppressed, where dot is the derivative with respect to cosmic time. 2) If the perturbation of matter is a homogeneous rotation inside some radius around a gyroscope, then exact dragging of the gyroscope axis by the rotational perturbation is reached exponentially fast as the rotation radius grows beyond the H-dot radius. 3) For the most general linear cosmological perturbations the time-evolution of all gyroscope spin axes exactly follow a weighted average of the energy currents of cosmological matter. The weight function is the same as in Ampere's law except that the inverse square law is replaced by the Yukawa force with the Hubble-dot cutoff. Our results demonstrate (in first order perturbation theory for FRW cosmologies with k = 0) the validity of Mach's hypothesis that axes of local non-rotating frames precisely follow an average of the motion of cosmic matter.Comment: 18 pages, 1 figure. Comments and references adde

    Phase Estimation from Atom Position Measurements

    Full text link
    We study the measurement of the position of atoms as a means to estimate the relative phase between two Bose-Einstein condensates. First, we consider NN atoms released from a double-well trap, forming an interference pattern, and show that a simple least-squares fit to the density gives a shot-noise limited sensitivity. The shot-noise limit can instead be overcome by using correlation functions of order N\sqrt{N} or larger. The measurement of the NthN\mathrm{th}-order correlation function allows to estimate the relative phase at the Heisenberg limit. Phase estimation through the measurement of the center-of-mass of the interference pattern can also provide sub-shot-noise sensitivity. Finally, we study the effect of the overlap between the two clouds on the phase estimation, when Mach-Zehnder interferometry is performed in a double-well.Comment: 20 pages, 6 figure

    Mach's principle: Exact frame-dragging via gravitomagnetism in perturbed Friedmann-Robertson-Walker universes with K=(±1,0)K = (\pm 1, 0)

    Full text link
    We show that the dragging of the axis directions of local inertial frames by a weighted average of the energy currents in the universe is exact for all linear perturbations of any Friedmann-Robertson-Walker (FRW) universe with K = (+1, -1, 0) and of Einstein's static closed universe. This includes FRW universes which are arbitrarily close to the Milne Universe, which is empty, and to the de Sitter universe. Hence the postulate formulated by E. Mach about the physical cause for the time-evolution of the axis directions of inertial frames is shown to hold in cosmological General Relativity for linear perturbations. The time-evolution of axis directions of local inertial frames (relative to given local fiducial axes) is given experimentally by the precession angular velocity of gyroscopes, which in turn is given by the operational definition of the gravitomagnetic field. The gravitomagnetic field is caused by cosmological energy currents via the momentum constraint. This equation for cosmological gravitomagnetism is analogous to Ampere's law, but it holds also for time-dependent situtations. In the solution for an open universe the 1/r^2-force of Ampere is replaced by a Yukawa force which is of identical form for FRW backgrounds with K=(−1,0).K = (-1, 0). The scale of the exponential cutoff is the H-dot radius, where H is the Hubble rate, and dot is the derivative with respect to cosmic time. Analogous results hold for energy currents in a closed FRW universe, K = +1, and in Einstein's closed static universe.Comment: 23 pages, no figures. Final published version. Additional material in Secs. I.A, I.J, III, V.H. Additional reference

    Three Questions on Lorentz Violation

    Get PDF
    We review the basics of the two most widely used approaches to Lorentz violation - the Stardard Model Extension and Noncommutative Field Theory - and discuss in some detail the example of the modified spectrum of the synchrotron radiation. Motivated by touching upon such a fundamental issue as Lorentz symmetry, we ask three questions: What is behind the search for Lorentz violation? Is String Theory a physical theory? Is there an alternative to Supersymmetry?Comment: 16 pages; invited luecture at DICE2006 - Piombino, Italy - September 200

    Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission Description and Science Goals

    Get PDF
    In recent years, NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to provide global observations of total lightning after 17 years on-orbit. In April 2013, a space-qualified LIS built as the flight spare for TRMM, was selected for flight as a science mission on the International Space Station. The ISS LIS (or I-LIS as Hugh Christian prefers) will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of global lightning. More specifically, it measures lightning during both day and night, with storm scale resolution, millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that the characteristics of lightning that LIS measures can be quantitatively coupled to both thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations with other payloads such as the European Space Agency's Atmosphere-Space Interaction Monitor (ASIM) that will be exploring the connection between thunderstorms and lightning with terrestrial gamma-ray flashes (TGFs). Another important function of the ISS LIS will be to provide cross-sensor calibration/validation with a number of other payloads, including the TRMM LIS and the next generation geostationary lightning mappers (e.g., GOES-R Geostationary Lightning Mapper and Meteosat Third Generation Lightning Imager). This inter-calibration will improve the long term climate monitoring provided by all these systems. Finally, the ISS LIS will extend the time-series climate record of LIS lightning observations and expand the latitudinal coverage of LIS lightning to the climate significant upper middle-latitudes
    • …
    corecore