160 research outputs found

    Probing Lepton Flavor Triality with Higgs Boson Decay

    Full text link
    If neutrino tribimaximal mixing is explained by a non-Abelian discrete symmetry such as A4A_4, T7T_7, Δ(27)\Delta(27), etc., the charged-lepton Higgs sector has a Z3Z_3 residual symmetry (lepton flavor triality), which may be observed directly in the decay chain H0ψ20ψˉ20H^0 \to \psi_2^0 \bar\psi_2^0, then ψ20(ψˉ20)li+lj (ij)\psi_2^0 (\bar\psi_2^0) \to l_i^+ l_j^- ~(i \neq j), where H0H^0 is a standard-model-like Higgs boson and ψ20\psi_2^0 is a scalar particle needed for realizing the original discrete symmetry. If kinematically allowed, this unusual and easily detectable decay is observable at the LHC with 1 fb1^{-1} for E_{cm} = 7 TeV.Comment: PRD versio

    QKD in Standard Optical Telecommunications Networks

    Get PDF
    To perform Quantum Key Distribution, the mastering of the extremely weak signals carried by the quantum channel is required. Transporting these signals without disturbance is customarily done by isolating the quantum channel from any noise sources using a dedicated physical channel. However, to really profit from this technology, a full integration with conventional network technologies would be highly desirable. Trying to use single photon signals with others that carry an average power many orders of magnitude bigger while sharing as much infrastructure with a conventional network as possible brings obvious problems. The purpose of the present paper is to report our efforts in researching the limits of the integration of QKD in modern optical networks scenarios. We have built a full metropolitan area network testbed comprising a backbone and an access network. The emphasis is put in using as much as possible the same industrial grade technology that is actually used in already installed networks, in order to understand the throughput, limits and cost of deploying QKD in a real network

    Dark Vector-Gauge-Boson Model

    Full text link
    A model based on SU(3)_C X SU(2)_L X U(1)_Y X SU(2)_N has recently been proposed, where the SU(2)_N vector gauge bosons are neutral, so that a vector dark-matter candidate is possible and constrained by data to be less than about 1 TeV. We explore further implications of this model, including a detailed study of its Higgs sector. We improve on its dark-matter phenomenology, as well as its discovery reach at the LHC (Large Hadron Collider).Comment: 15 pages, 4 figure

    Quantum encryption with certified deletion

    Get PDF
    Given a ciphertext, is it possible to prove the deletion of the underlying plaintext? Since classical ciphertexts can be copied, clearly such a feat is impossible using classical information alone. In stark contrast to this, we show that quantum encodings enable certified deletion. More precisely, we show that it is possible to encrypt classical data into a quantum ciphertext such that the recipient of the ciphertext can produce a classical string which proves to the originator that the recipient has relinquished any chance of recovering the plaintext should the decryption key be revealed. Our scheme is feasible with current quantum technology: the honest parties only require quantum devices for single-qubit preparation and measurements; the scheme is also robust against noise in these devices. Furthermore, we provide an analysis that is suitable in the finite-key regime.Comment: 28 pages, 1 figure. Some technical details modifie

    Conducting research in individual patients: lessons learnt from two series of N-of-1 trials

    Get PDF
    BACKGROUND: Double-blind randomised N-of-1 trials (N-of-1 trials) may help with decisions concerning treatment when there is doubt regarding the effectiveness and suitability of medication for individual patients. The patient is his or her own control, and receives the experimental and the control treatment during several periods of time in random order. Reports of N-of-1 trials are still relatively scarce, and the research methodology is not as firmly established as that of RCTs. Recently, we have conducted two series of N-of-1 trials in general practice. Before, during, and after data-collection, difficulties regarding outcome assessment, analysis of the results, the withdrawal of patients, and the follow-up had to be dealt with. These difficulties are described and our solutions are discussed. DISCUSSION: To prevent or anticipate difficulties in N-of-1 trials, we argue that that it is important to individualise the outcome measures, and to carefully consider the objective, type of randomisation and the analysis. It is recommended to use the same dosages and dosage forms that the patient used before the trial, to start the trial with a run-in period, to formulate both general and individualised decision rules regarding the efficacy of treatment, to adjust treatment policies immediately after the trial, and to provide adequate instructions and support if treatment is adjusted. SUMMARY: Because of the specific characteristics of N-of-1 trials it is difficult to formulate general 'how to do it' guidelines for designing N-of-1 trials. However, when the design of each N-of-1 trial is tailored to the specific characteristics of each individual patient and the underlying medical problem, most difficulties in N-of-1 trials can be prevented or overcome. In this way, N-of-1 trials may be of help when deciding on drug treatment for individual patients

    Short and medium-term effects of an education self-management program for individuals with osteoarthritis of the knee, designed and delivered by health professionals: A quality assurance study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Self-management (SM) programs are effective for some chronic conditions, however the evidence for arthritis SM is inconclusive. The aim of this case series project was to determine whether a newly developed specific self-management program for people with osteoarthritis of the knee (OAK), implemented by health professionals could achieve and maintain clinically meaningful improvements.</p> <p>Methods</p> <p><it>Participants: </it>79 participants enrolled; mean age 66, with established osteoarthritis of the knee. People with coexisting inflammatory joint disease or serious co-morbidities were excluded.</p> <p><it>Intervention: </it>6-week disease (OA) and site (knee) specific self-management education program that included disease education, exercise advice, information on healthy lifestyle and relevant information within the constructs of self-management. This program was conducted in a community health care setting and was delivered by health professionals thereby utilising their knowledge and expertise.</p> <p><it>Measurements: </it>Pain, physical function and mental health scales were assessed at baseline, 8 weeks, 6 and 12 months using WOMAC and SF-36 questionnaires. Changes in pain during the 8-week intervention phase were monitored with VAS.</p> <p>Results</p> <p>Pain improved during the intervention phase: mean (95% CI) change 15 (8 to 22) mm. Improvements (0.3 to 0.5 standard deviation units) in indices of pain, mental health and physical functioning, assessed by SF-36 and WOMAC questionnaires were demonstrated from baseline to 12 months.</p> <p>Conclusion</p> <p>This disease and site-specific self-management education program improved health status of people with osteoarthritis of the knee in the short and medium term.</p

    Regulation of ABCC6 trafficking and stability by a conserved C-terminal PDZ-like sequence

    Get PDF
    Mutations in the ABCC6 ABC-transporter are causative of pseudoxanthoma elasticum (PXE). The loss of functional ABCC6 protein in the basolateral membrane of the kidney and liver is putatively associated with altered secretion of a circulatory factor. As a result, systemic changes in elastic tissues are caused by progressive mineralization and degradation of elastic fibers. Premature arteriosclerosis, loss of skin and vascular tone, and a progressive loss of vision result from this ectopic mineralization. However, the identity of the circulatory factor and the specific role of ABCC6 in disease pathophysiology are not known. Though recessive loss-of-function alleles are associated with alterations in ABCC6 expression and function, the molecular pathologies associated with the majority of PXE-causing mutations are also not known. Sequence analysis of orthologous ABCC6 proteins indicates the C-terminal sequences are highly conserved and share high similarity to the PDZ sequences found in other ABCC subfamily members. Genetic testing of PXE patients suggests that at least one disease-causing mutation is located in a PDZ-like sequence at the extreme C-terminus of the ABCC6 protein. To evaluate the role of this C-terminal sequence in the biosynthesis and trafficking of ABCC6, a series of mutations were utilized to probe changes in ABCC6 biosynthesis, membrane stability and turnover. Removal of this PDZ-like sequence resulted in decreased steady-state ABCC6 levels, decreased cell surface expression and stability, and mislocalization of the ABCC6 protein in polarized cells. These data suggest that the conserved, PDZ-like sequence promotes the proper biosynthesis and trafficking of the ABCC6 protein. © 2014 Xue et al

    Ubiquitous Weak-key Classes of BRW-polynomial Function

    Get PDF
    BRW-polynomial function is suggested as a preferred alternative of polynomial function, owing to its high efficiency and seemingly non-existent weak keys. In this paper we investigate the weak-key issue of BRW-polynomial function as well as BRW-instantiated cryptographic schemes. Though, in BRW-polynomial evaluation, the relationship between coefficients and input blocks is indistinct, we give out a recursive algorithm to compute another (2v+11)(2^{v+1}-1)-block message, for any given (2v+11)(2^{v+1}-1)-block message, such that their output-differential through BRW-polynomial evaluation, equals any given ss-degree polynomial, where vlog2(s+1)v\ge\lfloor\log_2(s+1)\rfloor. With such algorithm, we illustrate that any non-empty key subset is a weak-key class in BRW-polynomial function. Moreover any key subset of BRW-polynomial function, consisting of at least 22 keys, is a weak-key class in BRW-instantiated cryptographic schemes like the Wegman-Carter scheme, the UHF-then-PRF scheme, DCT, etc. Especially in the AE scheme DCT, its confidentiality, as well as its integrity, collapses totally, when using weak keys of BRW-polynomial function, which are ubiquitous
    corecore