28 research outputs found

    Accurate Inference of Subtle Population Structure (and Other Genetic Discontinuities) Using Principal Coordinates

    Get PDF
    Accurate inference of genetic discontinuities between populations is an essential component of intraspecific biodiversity and evolution studies, as well as associative genetics. The most widely-used methods to infer population structure are model-based, Bayesian MCMC procedures that minimize Hardy-Weinberg and linkage disequilibrium within subpopulations. These methods are useful, but suffer from large computational requirements and a dependence on modeling assumptions that may not be met in real data sets. Here we describe the development of a new approach, PCO-MC, which couples principal coordinate analysis to a clustering procedure for the inference of population structure from multilocus genotype data.PCO-MC uses data from all principal coordinate axes simultaneously to calculate a multidimensional "density landscape", from which the number of subpopulations, and the membership within subpopulations, is determined using a valley-seeking algorithm. Using extensive simulations, we show that this approach outperforms a Bayesian MCMC procedure when many loci (e.g. 100) are sampled, but that the Bayesian procedure is marginally superior with few loci (e.g. 10). When presented with sufficient data, PCO-MC accurately delineated subpopulations with population F(st) values as low as 0.03 (G'(st)>0.2), whereas the limit of resolution of the Bayesian approach was F(st) = 0.05 (G'(st)>0.35).We draw a distinction between population structure inference for describing biodiversity as opposed to Type I error control in associative genetics. We suggest that discrete assignments, like those produced by PCO-MC, are appropriate for circumscribing units of biodiversity whereas expression of population structure as a continuous variable is more useful for case-control correction in structured association studies

    Inter and intra-species inter simple sequence repeat (ISSR) variations in the genus Cicer

    No full text
    Intra and inter-species ISSR variation and use of ISSR markers in determination of genetic relationship were investigated in an accession collection representing two perennial and six annual Cicer species. Screening of Cicer accessions with SSR primers revealed highly reproducible amplicon profiles with relatively high multiplex ratios. Many of the primers generated amplicon profiles with which not only the differences among species can readily be identified, but also polymorphisms within species could be detected more efficiently. PCR products at 150 gel positions detected using six SSR primers in Cicer accessions were treated as dominant DNA markers and utilized to compute the distances among accessions and species. Cluster analysis of accessions and species revealed groupings that corroborate our previous studies of relationships based on allozyme and AFLP analysis. Consistent with the AFLP analysis carried out in the same accession collection, ISSR-based groupings indicated that perennial C. incisum is genetically close to the annuals of the second crossability group (C. pinnatifidum, C. bijugum, C. judaicum) while C. reticulatum is the closest wild species to the cultivated chickpea. ISSR-based variation estimates were relatively higher when compared to previous estimates computed from RAPD and AFLP data. Technically, ISSR analysis combines the PCR-based targeting of microsatellite-associated polymorphisms with no prior sequence requirement and stringent PCR conditions. Similarly, when compared to AFLP analysis, it is less technically demanding allowing to survey polymorphic loci in the genome. Thus, ISSR-PCR technology is a reliable, fast, and cost-effective marker system that can be used to study genetic variation and genetic relationships in the genus Cicer

    Genetic relationships among perennial and annual Cicer species growing in Turkey as revealed by allozymes

    No full text
    Allozyme polymorphisms were used to assess genetic variation and relationships among ten Cicer species ( annuals and perennials) growing in Turkey. Using seven enzyme systems, 12 putative scorable loci were detected and surveyed for polymorphism in an accession collection including wild and cultivated forms. Variation was generally low within accessions and species, but common between species. Cluster analysis based on the pairwise genetic distance coefficients (Nei 1978) among accessions and species using UPGMA revealed two species clusters; one includes three perennials ( C. montbretii, C. isauricum and C. anatolicum) and the other contains six annuals ( C. pinnatifidum, C. bijugum, C. judaicum, C. echinospermum, C. reticulatum and C. arietinum) and one perennial species ( C. incisum). Grouping obtained in allozyme analysis appears to be consistent with the classification these species into three sections. However, contrary to relationships obtained in previous studies, three perennial species from section Polycicer were relatively distant to the group containing annuals. One perennial species, C. incisum from section Chamaecicer, clustered with annuals showing a close similarity. The grouping of six annual species was consistent with the previous reports of relationships. The relationships deduced between perennials and annuals appear to shed light on the evolution of annual habit from perennial habit

    Analysis of genetic relationships among perennial and annual Cicer species growing in Turkey using RAPD markers

    No full text
    Random amplified polymorphic DNA (RAPD) fragments were used to assess genetic relationships among Cicer spp. growing in Turkey. Seven 10-mer primers selected from a 50 random oligonucleotide primer set, depending on their ability to amplify genomic DNA in all species, were used to detect RAPD variation in 43 wild and cultivated accessions representing ten species. These primers yielded 95 reproducible amplification products, 92 of which were polymorphic. Pairwise,genetic distances of accessions estimated according to Nei and Li (1979) were used to produce a dendrogram using UPGMA. The dendrogram contained two main clusters, one of which comprised accessions of the four perennial species (Cicer montbretii, Cicer isauricum, Cicer anatolicum and Cicer incisum) together with the accessions of the three annual species (Cicer pinnatifidum, Cicer judaicum and Cicer bijugum), and the other cluster included the remaining three annual species (Cicer echinospermum, Cicer reticulatum and Cicer arietinum). Analysis of RAPD variation showed that C. incisum is the most similar perennial species to annuals, and C. reticulatum is the closest annual species to chickpea. These results generally agree with our allozyme study which was carried out using same Cicer collection and previous studies of relationships among annual species. The results also show that RAPD markers can be used to distinguish Cicer species and to survey genetic variation and relationships among taxonomic units in this genus

    Genetic relationships among perennial and annual Cicer species growing in Turkey assessed by AFLP fingerprinting

    No full text
    AFLP markers were used to assess genetic relationships among Cicer species with distribution in Turkey. Genetic distances were computed among 47 Cicer accessions representing four perennial and six annual species including chickpea, using 306 positions on AFLP gels. AFLP-based grouping of species revealed two clusters, one of which includes three perennial species, Cicer montbretii, Cicer isauricum and Cicer anatolicum, while the other cluster consists of two subclusters, one including one perennial, Cicer incisum, along with three annuals from the second crossability group (Cicer pinnatifidum, Cicer judaicum and Cicer bijugum) and the other one comprising three annuals from the first crossability group (Cicer echinospermum, Cicer reticulatum and Cicer arietinum). Consistent with previous relationship studies in the same accession set using allozyme and RAPD markers, in AFLP-based relationships, C. incisum was the closest perennial to nearly all annuals, and C. reticulatum was the closest wild species to C. arietinum. Cluster analysis revealed the grouping of all accessions into their distinct species-clusters except for C. reticulatum accessions, ILWC247, ILWC242 and TR54961; the former was found to be closer to the C. arietinum accessions while the latter two clustered with the C. echinospermum group. Small genetic distance values were detected among C. reticulatum accessions (0.282) and between C. reticulatum and C. arietinum (0.301) indicating a close genetic similarity between these two species. Overall, the AFLP-based genetic relationships among accessions and species were congruous with our previous study of genetic relationships using allozymes. The computed level of AFLP variation and its distribution into within and between Cicer species paralleled the previous report based on RAPD analyses. AFLP analysis also confirmed the presence of the closest wild relatives and previous projections of the origin of chickpea in southern Turkey. Results presented in this report indicate that AFLP analysis is an efficient and reliable marker technology in determination of genetic variation and relationships in the genus Cicer. Obviously, the use of AFLP fingerprinting in constructing a detailed genetic map of chickpea and cloning, and characterizing economically important traits would be promising as well
    corecore