7,258 research outputs found

    Incorporating Environmental Health into Pediatric Medical and Nursing Education

    Get PDF
    Pediatric medical and nursing education currently lacks the environmental health content necessary to appropriately prepare pediatric health care professionals to prevent, recognize, manage, and treat environmental-exposure–related disease. Leading health institutions have recognized the need for improvements in health professionals’ environmental health education. Parents are seeking answers about the impact of environmental toxicants on their children. Given the biologic, psychological, and social differences between children and adults, there is a need for environmental health education specific to children. The National Environmental Education and Training Foundation, in partnership with the Children’s Environmental Health Network, created two working groups, one with expertise in medical education and one with expertise in nursing education. The working groups reviewed the transition from undergraduate student to professional to assess where in those processes pediatric environmental health could be emphasized. The medical education working group recommended increasing education about children’s environmental health in the medical school curricula, in residency training, and in continuing medical education. The group also recommended the expansion of fellowship training in children’s environmental health. Similarly, the nursing working group recommended increasing children’s environmental health content at the undergraduate, graduate, and continuing nursing education levels. Working groups also identified the key medical and nursing organizations that would be important in leveraging these changes. A concerted effort to prioritize pediatric environmental health by governmental organizations and foundations is essential in providing the resources and expertise to set policy and provide the tools for teaching pediatric environmental health to health care providers

    Knowledge graph for identifying hazards on construction sites: Integrating computer vision with ontology

    Get PDF
    Hazards potentially affect the safety of people on construction sites include falls from heights (FFH), trench and scaffold collapse, electric shock and arc flash/arc blast, and failure to use proper personal protective equipment. Such hazards are significant contributors to accidents and fatalities. Computer vision has been used to automatically detect safety hazards to assist with the mitigation of accidents and fatalities. However, as safety regulations are subject to change and become more stringent prevailing computer vision approaches will become obsolete as they are unable to accommodate the adjustments that are made to practice. This paper integrates computer vision algorithms with ontology models to develop a knowledge graph that can automatically and accurately recognise hazards while adhering to safety regulations, even when they are subjected to change. Our developed knowledge graph consists of: (1) an ontological model for hazards: (2) knowledge extraction; and (3) knowledge inference for hazard identification. We focus on the detection of hazards associated with FFH as an example to illustrate our proposed approach. We also demonstrate that our approach can successfully detect FFH hazards in varying contexts from images

    Peanut oral immunotherapy transiently expands circulating Ara h 2–specific B cells with a homologous repertoire in unrelated subjects

    Get PDF
    Background Peanut oral immunotherapy (PNOIT) induces persistent tolerance to peanut in a subset of patients and induces specific antibodies that might play a role in clinical protection. However, the contribution of induced antibody clones to clinical tolerance in PNOIT is unknown. Objective We hypothesized that PNOIT induces a clonal, allergen-specific B-cell response that could serve as a surrogate for clinical outcomes. Methods We used a fluorescent Ara h 2 multimer for affinity selection of Ara h 2–specific B cells and subsequent single-cell immunoglobulin amplification. The diversity of related clones was evaluated by means of next-generation sequencing of immunoglobulin heavy chains from circulating memory B cells with 2x250 paired-end sequencing on the Illumina MiSeq platform. Results Expression of class-switched antibodies from Ara h 2–positive cells confirms enrichment for Ara h 2 specificity. PNOIT induces an early and transient expansion of circulating Ara h 2–specific memory B cells that peaks at week 7. Ara h 2–specific sequences from memory cells have rates of nonsilent mutations consistent with affinity maturation. The repertoire of Ara h 2–specific antibodies is oligoclonal. Next-generation sequencing–based repertoire analysis of circulating memory B cells reveals evidence for convergent selection of related sequences in 3 unrelated subjects, suggesting the presence of similar Ara h 2–specific B-cell clones. Conclusions Using a novel affinity selection approach to identify antigen-specific B cells, we demonstrate that the early PNOIT-induced Ara h 2–specific B-cell receptor repertoire is oligoclonal and somatically hypermutated and shares similar clonal groups among unrelated subjects consistent with convergent selection. Key words Immunotherapy; antigen-specific B cells; peanut allergy; food allergy; antibody repertoire Abbreviations used APC, Allophycocyanin; BCR, B-cell receptor; CDR, Complementarity-determining region; NGS, Next-generation sequencing; OIT, Oral immunotherapy; PNOIT, Peanut oral immunotherapyNational Institute of Allergy and Infectious Diseases (U.S.) (NIAID U19 AI087881)National Institute of Allergy and Infectious Diseases (U.S.) (NIAID U19 AI095261)United States. National Institutes of Health (1S10RR023440-01A1)National Institute of Allergy and Infectious Diseases (U.S.) (NIAID F32 AI104182)United States. National Institutes of Health (UL1 TR001102

    The centrosome and spindle as a ribonucleoprotein complex

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Chromosome Research 19 (2011): 367-376, doi:10.1007/s10577-011-9186-7.The presence of nucleic acids in centrosomes and the spindle have been proposed, observed, and reported since the 1950s. Why did the subject remain, perhaps even until today, such a controversial issue? The explanation is manifold, and includes legitimate concern over contamination from other cellular compartments in biochemical preparations. With a typically high background of cytoplasmic ribosomes, even microscopic images of stained intact cells could be difficult to interpret. Also, evidence for RNA and DNA in centrosomes accumulated for approximately 40 years but was interspersed with contradictory studies, primarily regarding the presence of DNA (reviewed in Johnson and Rosenbaum, 1991; Marshall and Rosenbaum, 2000). Perhaps less tangible but still a likely cause for lingering controversy is that the presence of nucleic acids in the spindle or centrosomes will require us to look differently at these structures from a functional, and more to the point, evolutionary standpoint.This work was supported by grants from the NIH (GM088503) and NSF (MCB0843092) to MCA

    Nonlinear Elasticity, Fluctuations and Heterogeneity of Nematic Elastomers

    Full text link
    Liquid crystal elastomers realize a fascinating new form of soft matter that is a composite of a conventional crosslinked polymer gel (rubber) and a liquid crystal. These {\em solid} liquid crystal amalgams, quite similarly to their (conventional, fluid) liquid crystal counterparts, can spontaneously partially break translational and/or orientational symmetries, accompanied by novel soft Goldstone modes. As a consequence, these materials can exhibit unconventional elasticity characterized by symmetry-enforced vanishing of some elastic moduli. Thus, a proper description of such solids requires an essential modification of the classical elasticity theory. In this work, we develop a {\em rotationally invariant}, {\em nonlinear} theory of elasticity for the nematic phase of ideal liquid crystal elastomers. We show that it is characterized by soft modes, corresponding to a combination of long wavelength shear deformations of the solid network and rotations of the nematic director field. We study thermal fluctuations of these soft modes in the presence of network heterogeneities and show that they lead to a large variety of anomalous elastic properties, such as singular length-scale dependent shear elastic moduli, a divergent elastic constant for splay distortion of the nematic director, long-scale incompressibility, universal Poisson ratios and a nonlinear stress-strain relation fo arbitrary small strains. These long-scale elastic properties are {\em universal}, controlled by a nontrivial zero-temperature fixed point and constitute a qualitative breakdown of the classical elasticity theory in nematic elastomers. Thus, nematic elastomers realize a stable ``critical phase'', characterized by universal power-law correlations, akin to a critical point of a continuous phase transition, but extending over an entire phase.Comment: 61 pages, 24 eps pages, submitted to Annals of Physic

    Experimental modulation of capsule size in Cryptococcus neoformans

    Get PDF
    Experimental modulation of capsule size is an important technique for the study of the virulence of the encapsulated pathogen Cryptococcus neoformans. In this paper, we summarize the techniques available for experimental modulation of capsule size in this yeast and describe improved methods to induce capsule size changes. The response of the yeast to the various stimuli is highly dependent on the cryptococcal strain. A high CO(2) atmosphere and a low iron concentration have been used classically to increase capsule size. Unfortunately, these stimuli are not reliable for inducing capsular enlargement in all strains. Recently we have identified new and simpler conditions for inducing capsule enlargement that consistently elicited this effect. Specifically, we noted that mammalian serum or diluted Sabouraud broth in MOPS buffer pH 7.3 efficiently induced capsule growth. Media that slowed the growth rate of the yeast correlated with an increase in capsule size. Finally, we summarize the most commonly used media that induce capsule growth in C. neoformans

    A Modified Coupled Enzyme Method for O-linked GlcNAc Transferase Activity Assay

    Get PDF
    In order to determine the activity of O-linked GlcNAc transferase (OGT), a modified coupled enzyme method was proposed. This method was based on the measurement of uridine 5'-(trihydrogen diphosphate) (UDP), a product generated in transglycosylation reaction. In the assay, UDP was coupled to the conversion of phosphoenolpyruvate to pyruvate using pyruvate kinase. Using a commercial pyruvate assay kit, the pyruvate was converted to a red terminal product, which could be photometrically measured at 570 nm or fluorometrically measured at 587 nm (Em = 535 nm) on a microplate reader. Kinetic study of a truncated recombinant mOGT and quantitative analysis of OGT in two biological samples indicated that this method was practical and competitive for quantitative analysis of OGT

    Nanowell-Based Immunoassays for Measuring Single-Cell Secretion: Characterization of Transport and Surface Binding

    Get PDF
    Arrays of subnanoliter wells (nanowells) provide a useful system to isolate single cells and analyze their secreted proteins. Two general approaches have emerged: one that uses open arrays and local capture of secreted proteins, and a second (called microengraving) that relies on closed arrays to capture secreted proteins on a solid substrate, which is subsequently removed from the array. However, the design and operating parameters for efficient capture from these two approaches to analyze single-cell secretion have not been extensively considered. Using numerical simulations, we analyzed the operational envelope for both open and closed formats, as a function of the spatial distribution of capture ligands, their affinities for the protein, and the rates of single-cell secretion. Based on these analyses, we present a modified approach to capture secreted proteins in-well for highly active secreting cells. This simple method for in-well detection should facilitate rapid identification of cell lines with high specific productivities.National Institutes of Health (U.S.)/National Institute of Allergy and Infectious Diseases (U.S.) (5P01AI045757)National Cancer Institute (U.S.) (Koch Institute Support (Core) Grant P30-CA14051
    • …
    corecore