519 research outputs found

    Diagnosis and Management of Multiple Endocrine Neoplasia Type 1 (MEN1)

    Get PDF
    Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominantly inherited disorder, characterised by the occurrence of tumours of the parathyroid glands, the pancreatic islets, the pituitary gland, the adrenal glands and neuroendocrine carcinoid tumours. Carcinoid tumours of the thymus and pancreatic-duodenal gastrinomas are the most harmful tumour types, since these tumours have malignant potential and curative treatment is difficult to achieve

    Recent results of basic and clinical research in MEN1:opportunities to improve early detection and treatment

    Get PDF
    Due to the variable expression of multiple endocrine neoplasia type 1 (MEN1), it is difficult to predict the course of the disease. However, knowledge about the normal function of the MEN1 gene product, together with the effects of cellular derangement by subsequent genetic events, has increased considerably. At first, the possible existence of a genotype-phenotype correlation is discussed. Thus, mild-and late-onset phenotypes may be distinguished from more malignant phenotypes depending on the character of the primary MEN1 disease gene mutation. Subsequently, tumor-promoting factors such as gender, additional genetic mutations and ecogenetic factors may contribute to the course of the disease. New developments in management are based on the knowledge and experience of the multidisciplinary teams involved. Finally, the metabolic effects of MEN1 mutations in aged patients are discussed. Early identification of predisposition to the disease, together with knowledge about the natural history of specific mutations, risks of additional mutations and periodic clinical monitoring, allow early treatment and may improve life expectancy and quality of life

    Efficacy of different doses and time intervals of oral vitamin D supplementation with or without calcium in elderly nursing home residents

    Get PDF
    Summary: The effect of equivalent oral doses of vitamin D3 600 IU/day, 4200 IU/week and 18,000 IU/month on vitamin D status was compared in a randomized clinical trial in nursing home residents. A daily dose was more effective than a weekly dose, and a monthly dose was the least effective. Introduction: It is assumed that equivalent daily, weekly or monthly doses of vitamin D3 equally influence vitamin D status. This was investigated in a randomized clinical trial in nursing home residents. Methods: The study was performed in ten nursing homes including 338 subjects (76 male and 262 female), with a mean age of 84 (± SD 6.3 years). They received oral vitamin D3 either 600 IU/day, or 4200 IU/week, or 18,000 IU/month or placebo. After 4 months, calcium was added during 2 weeks, 320 mg/day or 640 mg/day or placebo. Outcome: serum levels of 25-hydroxyvitamin D (25(OH)D), parathyroid hormone (PTH) and bone turnover markers. Statistical approach: linear multilevel analysis. Results: At baseline, mean serum 25(OH)D was 25.0 nmol/L (SD 10.9), and in 98%, it was lower than 50 nmol/L. After 4 months, mean serum 25(OH)D levels increased to 62.5 nmol/L (after daily vitamin D3 69.9 nmol/L, weekly 67.2 nmol/L and monthly 53.1 nmol/L, P<0.001 between groups). Median serum PTH levels decreased by 23% (p<0.001). Bone turnover markers did not decrease. Calcium supplementation had no effect on serum PTH and bone turnover. Conclusion: Daily vitamin D was more effective than weekly, and monthly administration was the least effective. © 2007 International Osteoporosis Foundation and National Osteoporosis Foundation

    Opening the archives for state of the art tumour genetic research: sample processing for array-CGH using decalcified, formalin-fixed, paraffin-embedded tissue-derived DNA samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular genetic studies on rare tumour entities, such as bone tumours, often require the use of decalcified, formalin-fixed, paraffin-embedded tissue (dFFPE) samples. Regardless of which decalcification procedure is used, this introduces a vast breakdown of DNA that precludes the possibility of further molecular genetic testing. We set out to establish a robust protocol that would overcome these intrinsic hurdles for bone tumour research.</p> <p>Findings</p> <p>The goal of our study was to establish a protocol, using a modified DNA isolation procedure and quality controls, to select decalcified samples suitable for array-CGH testing. Archival paraffin blocks were obtained from 9 different pathology departments throughout Europe, using different fixation, embedding and decalcification procedures, in order to preclude a bias for certain lab protocols. Isolated DNA samples were subjected to direct chemical labelling and enzymatic labelling systems and were hybridised on a high resolution oligonucleotide chip containing 44,000 reporter elements.</p> <p>Genomic alterations (gains and losses) were readily detected in most of the samples analysed. For example, both homozygous deletions of 0.6 Mb and high level of amplifications of 0.7 Mb were identified.</p> <p>Conclusions</p> <p>We established a robust protocol for molecular genetic testing of dFFPE derived DNA, irrespective of fixation, decalcification or sample type used. This approach may greatly facilitate further genetic testing on rare tumour entities where archival decalcified, formalin fixed samples are the only source.</p

    Quantitative copy number analysis by Multiplex Ligation-dependent Probe Amplification (MLPA) of BRCA1-associated breast cancer regions identifies BRCAness

    Get PDF
    Our group has previously employed array Comparative Genomic Hybridization (aCGH) to assess the genomic patterns of BRCA1-mutated breast cancers. We have shown that the so-called BRCA1-like(aCGH) profile is also present in about half of all triple-negative sporadic breast cancers and is predictive for benefit from intensified alkylating chemotherapy. As aCGH is a rather complex method, we translated the BRCA1(aCGH) profile to a Multiplex Ligation-dependent Probe Amplification (MLPA) assay, to identify both BRCA1-mutated breast cancers and sporadic cases with a BRCA1-like(aCGH) profile. The most important genomic regions of the original aCGH based classifier (3q22-27, 5q12-14, 6p23-22, 12p13, 12q21-23, 13q31-34) were mapped to a set of 34 MLPA probes. The training set consisted of 39 BRCA1-like(aCGH) breast cancers and 45 non-BRCA1-like(aCGH) breast cancers, which had previously been analyzed by aCGH. The BRCA1-like(aCGH) group consisted of germline BRCA1-mutated cases and sporadic tumours with low BRCA1 gene expression and/or BRCA1 promoter methylation. We trained a shrunken centroids classifier on the training set and validation was performed on an independent test set of 40 BRCA1-like(aCGH) breast cancers and 32 non-BRCA1-like(aCGH) breast cancer tumours. In addition, we validated the set prospectively on 69 new triple-negative tumours. BRCAness in the training set of 84 tumours could accurately be predicted by prediction analysis of microarrays (PAM) (accuracy 94%). Application of this classifier on the independent validation set correctly predicted BRCA-like status of 62 out of 72 breast tumours (86%). Sensitivity and specificity were 85% and 87%, respectively. When the MLPA-test was subsequently applied to 46 breast tumour samples from a randomized clinical trial, the same survival benefit for BRCA1-like tumours associated with intensified alkylating chemotherapy was shown as was previously reported using the aCGH assay. Since the MLPA assay can identify BRCA1-deficient breast cancer patients, this method could be applied both for clinical genetic testing and as a predictor of treatment benefit. BRCA1-like tumours are highly sensitive to chemotherapy with DNA damaging agents, and most likely to poly ADP ribose polymerase (PARP)-inhibitors. The MLPA assay is rapid and robust, can easily be multiplexed, and works well with DNA derived from paraffin-embedded tissue

    Breakup Temperature of Target Spectators in Au + Au Collisions at E/A = 1000 MeV

    Get PDF
    Breakup temperatures were deduced from double ratios of isotope yields for target spectators produced in the reaction Au + Au at 1000 MeV per nucleon. Pairs of 3,4^{3,4}He and 6,7^{6,7}Li isotopes and pairs of 3,4^{3,4}He and H isotopes (p, d and d, t) yield consistent temperatures after feeding corrections, based on the quantum statistical model, are applied. The temperatures rise with decreasing impact parameter from 4 MeV for peripheral to about 10 MeV for the most central collisions. The good agreement with the breakup temperatures measured previously for projectile spectators at an incident energy of 600 MeV per nucleon confirms the observed universality of the spectator decay at relativistic bombarding energies. The measured temperatures also agree with the breakup temperatures predicted by the statistical multifragmentation model. For these calculations a relation between the initial excitation energy and mass was derived which gives good simultaneous agreement for the fragment charge correlations. The energy spectra of light charged particles, measured at θlab\theta_{lab} = 150^{\circ}, exhibit Maxwellian shapes with inverse slope parameters much higher than the breakup temperatures. The statistical multifragmentation model, because Coulomb repulsion and sequential decay processes are included, yields light-particle spectra with inverse slope parameters higher than the breakup temperatures but considerably below the measured values. The systematic behavior of the differences suggests that they are caused by light-charged-particle emission prior to the final breakup stage. PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.-qComment: 29 pages, TeX with 11 included figures; Revised version accepted for publication in Z. Phys. A Two additional figure

    Single blind randomized Phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): study protocol for a randomized controlled trial

    Get PDF
    Background: The treatment results of external beam radiotherapy for intermediate and high risk prostate cancer patients are insufficient with five-year biochemical relapse rates of approximately 35%. Several randomized trials have shown that dose escalation to the entire prostate improves biochemical disease free survival. However, further dose escalation to the whole gland is limited due to an unacceptable high risk of acute and late toxicity. Moreover, local recurrences often originate at the location of the macroscopic tumor, so boosting the radiation dose at the macroscopic tumor within the prostate might increase local control. A reduction of distant metastases and improved survival can be expected by reducing local failure. The aim of this study is to investigate the benefit of an ablative microboost to the macroscopic tumor within the prostate in patients treated with external beam radiotherapy for prostate cancer.Methods/Design: The FLAME-trial (Focal Lesion Ablative Microboost in prostatE cancer) is a single blind randomized controlled phase III trial. We aim to include 566 patients (283 per treatment arm) with intermediate or high risk adenocarcinoma of the prostate who are scheduled for external beam radiotherapy using fiducial markers for position verification. With this number of patients, the expected increase in five-year freedom from biochemical failure rate of 10% can be detected with a power of 80%. Patients allocated to the standard arm receive a dose of 77 Gy in 35 fractions to the entire prostate and patients in the experimental arm receive 77 Gy to the entire prostate and an additional integrated microboost to the macroscopic tumor of 95 Gy in 35 fractions. The secondary outcome measures include treatment-related toxicity, quality of life and disease-specific survival. Furthermore, by localizing the recurrent tumors within the prostate during follow-up and correlating this with the delivered dose, we can obtain accurate dose-effect information for both the macroscopic tumor and subclinical disease in prostate cancer. The rationale, study design and the first 50 patients included are described.Biological, physical and clinical aspects of cancer treatment with ionising radiatio

    High fidelity copy number analysis of formalin-fixed and paraffin-embedded tissues using affymetrix cytoscan HD chip

    Get PDF
    Detection of human genome copy number variation (CNV) is one of the most important analyses in diagnosing human malignancies. Genome CNV detection in formalin-fixed and paraffin-embedded (FFPE) tissues remains challenging due to suboptimal DNA quality and failure to use appropriate baseline controls for such tissues. Here, we report a modified method in analyzing CNV in FFPE tissues using microarray with Affymetrix Cytoscan HD chips. Gel purification was applied to select DNA with good quality and data of fresh frozen and FFPE tissues from healthy individuals were included as baseline controls in our data analysis. Our analysis showed a 91% overlap between CNV detection by microarray with FFPE tissues and chromosomal abnormality detection by karyotyping with fresh tissues on 8 cases of lymphoma samples. The CNV overlap between matched frozen and FFPE tissues reached 93.8%. When the analyses were restricted to regions containing genes, 87.1% concordance between FFPE and fresh frozen tissues was found. The analysis was further validated by Fluorescence In Situ Hybridization on these samples using probes specific for BRAF and CITED2. The results suggested that the modified method using Affymetrix Cytoscan HD chip gave rise to a significant improvement over most of the previous methods in terms of accuracy in detecting CNV in FFPE tissues. This FFPE microarray methodology may hold promise for broad application of CNV analysis on clinical samples. © 2014 Yu et al

    Alcohol consumption and body composition in a population-based sample of elderly Australian men

    Full text link
    Background: Alcohol is calorie dense, and impacts&nbsp;activity, appetite and lipid processing. The aim of this&nbsp;study was to therefore investigate the association between&nbsp;alcohol consumption and components of body composition&nbsp;including bone, fat and lean tissue.Methods: Participants were recruited from a randomly&nbsp;selected, population-based sample of 534 men aged&nbsp;65 years and older enrolled in the Geelong Osteoporosis&nbsp;Study. Alcohol intake was ascertained using a food&nbsp;frequency questionnaire and the sample categorised as nondrinkers or alcohol users who consumed B2, 3&ndash;4 or C5&nbsp;standard drinks on a usual drinking day. Bone mineral&nbsp;density (BMD), lean body mass and body fat mass were&nbsp;measured using dual energy X-ray absorptiometry; overall&nbsp;adiposity (%body fat), central adiposity (%truncal fat) and&nbsp;body mass index (BMI) were calculated. Bone quality was&nbsp;determined by quantitative heel ultrasound (QUS).Results: There were 90 current non-drinkers (16.9 %),&nbsp;266 (49.8 %) consumed 1&ndash;2 drinks/day, 104 (19.5 %) 3&ndash;4&nbsp;drinks/day and 74 (13.8 %) C5 drinks/day. Those consuming C5 drinks/day had greater BMI (?4.8 %), fat mass&nbsp;index (?20.1 %), waist circumference (?5.0 %), %body&nbsp;fat (?15.2 %) and proportion of trunk fat (?5.3 %) and&nbsp;lower lean mass (-5.0 %) than non-drinkers after adjustment for demographic and lifestyle factors. Furthermore,&nbsp;they were more likely to be obese than non-drinkers&nbsp;according to criteria based on BMI (OR = 2.83, 95 %CI&nbsp;1.10&ndash;7.29) or waist circumference (OR = 3.36, 95 %CI&nbsp;1.32&ndash;8.54). There was an inverse relationship between&nbsp;alcohol consumption and QUS parameters and BMD at the&nbsp;mid forearm site; no differences were detected for BMD at&nbsp;other skeletal sites.Conclusion:&nbsp;Higher alcohol intake was associated with&nbsp;greater total and central adiposity and reduced bone&nbsp;quality.<br /
    corecore