3,094 research outputs found

    Light-Cone Representation of the Spin and Orbital Angular Momentum of Relativistic Composite Systems

    Get PDF
    The matrix elements of local operators such as the electromagnetic current, the energy momentum tensor, angular momentum, and the moments of structure functions have exact representations in terms of light-cone Fock state wavefunctions of bound states such as hadrons. We illustrate all of these properties by giving explicit light-cone wavefunctions for the two-particle Fock state of the electron in QED, thus connecting the Schwinger anomalous magnetic moment to the spin and orbital momentum carried by its Fock state constituents. We also compute the QED one-loop radiative corrections for the form factors for the graviton coupling to the electron and photon. Although the underlying model is derived from elementary QED perturbative couplings, it in fact can be used to simulate much more general bound state systems by applying spectral integration over the constituent masses while preserving all of the Lorentz properties, giving explicit realization of the spin sum rules and other local matrix elements. The role of orbital angular momentum in understanding the "spin crisis" problem for relativistic systems is clarified. We also prove that the anomalous gravitomagnetic moment B(0) vanishes for any composite system. This property is shown to follow directly from the Lorentz boost properties of the light-cone Fock representation and holds separately for each Fock state component. We show how the QED perturbative structure can be used to model bound state systems while preserving all Lorentz properties. We thus obtain a theoretical laboratory to test the consistency of formulae which have been proposed to probe the spin structure of hadrons.Comment: Version to be published in Nuclear Physics B. Includes illustrations of graviton-lepton form factors at one loop in QE

    A dynamical model for longitudinal wave functions in light-front holographic QCD

    Full text link
    We construct a Schrodinger-like equation for the longitudinal wave function of a meson in the valence qq-bar sector, based on the 't Hooft model for large-N two-dimensional QCD, and combine this with the usual transverse equation from light-front holographic QCD, to obtain a model for mesons with massive quarks. The computed wave functions are compared with the wave function ansatz of Brodsky and De Teramond and used to compute decay constants and parton distribution functions. The basis functions used to solve the longitudinal equation may be useful for more general calculations of meson states in QCD.Comment: 12 pages, 2 figures, RevTeX 4.1; expanded discussion, with calculation details moved to appendice

    A Shape-Aware Model for Discrete Texture Synthesis

    Get PDF
    International audienceWe present a novel shape-aware method for synthesizing 2D and 3D discrete element textures consisting of collections of distinct vector graphics objects. Extending the long-proven point process framework, we propose a shape process, a novel stochastic model based on spatial measurements that fully take into account the geometry of the elements. We demonstrate that our approach is well-suited for discrete texture synthesis by example. Our modelenables for both robust statistical parameter estimation and reliable output generation by Monte Carlo sampling. Our numerous experiments show that contrary to current state-of-the-art techniques, our algorithm manages to capture anisotropic element distributions and systematically prevents undesirable collisions between objects

    Tests of the Standard Model Using Muon Polarization Asymmetries in Kaon Decays

    Get PDF
    We have examined the physics and the experimental feasibility of studying various kaon decay processes in which the polarization of a muon in the final state is measured. Valuable information on CP violation, the quark mixing (CKM) matrix, and new physics can be obtained from such measurements. We have considered muon polarization in K_L to mu+ mu- and K to pi mu+ mu- decays. Although the effects are small, or difficult to measure because of the small branching ratios involved, these studies could provide clean measurements of the CKM parameters. The experimental difficulty appears comparable to the observation of K to pi nu barnu. New sources of physics, involving non-standard CP violation, could produce effects observable in these measurements. Limits from new results on the neutron and electron electric dipole moment, and epsilon-prime over epsilon in neutral kaon decays, do not eliminate certain models that could contribute to the signal. A detailed examination of muon polarization out of the decay plane in KMU3 and radiative KMU2 decays also appears to be of interest. With current kaon beams and detector techniques, it is possible to measure the T-violating polarization for KMU3 with uncertainties approaching 0.0001. This level of sensitivity would provide an interesting probe of new physics.Comment: 24 pages, 3 figures, To be published in the International Journal of Modern Physics

    Contributions from SUSY-FCNC couplings to the interpretation of the HyperCP events for the decay \Sigma^+ \to p \mu^+ \mu^-

    Full text link
    The observation of three events for the decay Σ+→pμ+μ−\Sigma^+ \to p \mu^+ \mu^- with a dimuon invariant mass of 214.3±0.5214.3\pm0.5MeV by the HyperCP collaboration imply that a new particle X may be needed to explain the observed dimuon invariant mass distribution. We show that there are regions in the SUSY-FCNC parameter space where the A10A^0_1 in the NMSSM can be used to explain the HyperCP events without contradicting all the existing constraints from the measurements of the kaon decays, and the constraints from the K0−Kˉ0K^0-\bar{K}^0 mixing are automatically satisfied once the constraints from kaon decays are satisfied.Comment: 18 pages, 7 figure

    Experimental Evidence of a Haldane Gap in an S = 2 Quasi-linear Chain Antiferromagnet

    Full text link
    The magnetic susceptibility of the S=2S = 2 quasi-linear chain Heisenberg antiferromagnet (2,2′2'-bipyridine)trichloromanganese(III), MnCl_{3}(bipy), has been measured from 1.8 to 300 K with the magnetic field, H, parallel and perpendicular to the chains. The analyzed data yield g≈2g\approx 2 and J≈35J\approx 35 K. The magnetization, M, has been studied at 30 mK and 1.4 K in H up to 16 T. No evidence of long-range order is observed. Depending on crystal orientation, M≈0M\approx 0 at 30 mK until a critical field is achieved (Hc∥=1.2±0.2TH_{c\|} = 1.2\pm 0.2 T and $H_{c\bot} = 1.8\pm 0.2 T), where M increases continuously as H is increased. These results are interpreted as evidence of a Haldane gap.Comment: 11 pages, 4 figure

    Are diamonds a MEMS\u27 best friend?

    Get PDF
    Next-generation military and civilian communication systems will require technologies capable of handling data/ audio, and video simultaneously while supporting multiple RF systems operating in several different frequency bands from the MHz to the GHz range [1]. RF microelectromechanical/nanoelectromechanical (MEMS/NEMS) devices, such as resonators and switches, are attractive to industry as they offer a means by which performance can be greatly improved for wireless applications while at the same time potentially reducing overall size and weight as well as manufacturing costs

    The Rare Decay D^0 -> gamma gamma

    Full text link
    We present a calculation of the rare decay mode D^0 -> gamma gamma, in which the long distance contributions are expected to be dominant. Using the Heavy Quark Chiral Perturbation Theory Lagrangian with a strong g coupling as recently determined by CLEO from the D^* -> D pi width, we consider both the anomaly contribution which relates to the annihilation part of the weak Lagrangian and the one-loop pi, K diagrams. The loop contributions which are proportional to g and contain the a_1 Wilson coefficient are found to dominate the decay amplitude, which turns out to be mainly parity violating. The branching ratio is then calculated to be (1.0+-0.5)x10^(-8). Observation of an order of magnitude larger branching ratio could be indicative of new physics.Comment: 16 pages, 5 figures, additional reference and several remarks added, results unchange

    Rare Z-decay into light CP-odd Higgs bosons: a comparative study in different new physics models

    Full text link
    Various new physics models predict a light CP-odd Higgs boson (labeled as aa) and open up new decay modes for Z-boson, such as Z→fˉfaZ \to \bar{f} f a, Z→aγZ\to a\gamma and Z→aaaZ\to aaa, which could be explored at the GigaZ option of the ILC. In this work we investigate these rare decays in several new physics models, namely the type-II two Higgs doublet model (type-II 2HDM), the lepton-specific two Higgs doublet model (L2HDM), the nearly minimal supersymetric standard model (nMSSM) and the next-to-minimal supersymmetric standard model (NMSSM). We find that in the parameter space allowed by current experiments, the branching ratios can reach 10−410^{-4} for Z→fˉfaZ \to \bar{f} f a (f=b,τf=b,\tau), 10−910^{-9} for Z→aγZ\to a\gamma and 10−310^{-3} for Z→aaaZ\to aaa, which implies that the decays Z→fˉfaZ \to \bar{f} f a and Z→aaaZ \to a a a may be accessible at the GigaZ option. Moreover, since different models predict different patterns of the branching ratios, the measurement of these rare decays at the GigaZ may be utilized to distinguish the models.Comment: Version in JHEP (discussions added, errors corrected
    • …
    corecore