5 research outputs found

    Predictive fermion mass matrix ansatzes in non-supersymmetric SO(10) grand unification

    Full text link
    We investigate the status of predictive fermion mass ansatzes which make use of the grand unification scale conditions me=md/3m_e=m_d/3, mμ=3msm_\mu =3m_s, and Vcb=mc/mt\mid V_{cb}\mid =\sqrt{m_{c}/m_{t}} in non-supersymmetric SO(10) grand unification. The gauge symmetry below an intermediate symmetry breaking scale MIM_I is assumed to be that of the standard model with either one Higgs doublet or two Higgs doublets . We find in both cases that a maximum of 5 standard model parameters may be predicted within 1σ1\sigma experimental ranges. We find that the standard model scenario predicts the low energy Vcb\mid V_{cb}\mid to be in a range which includes its experimental mid-value 0.044 and which for a large top mass can extend to lower values than the range resulting in the supersymmetric case. In the two Higgs standard model case, we identify the regions of parameter space for which unification of the bottom quark and tau lepton Yukawa couplings is possible at grand unification scale. In fact, we find that unification of the top, bottom and tau Yukawa couplings is possible with the running b-quark mass within the 1σ1\sigma preferred range mb=4.25±0.1GeVm_b=4.25\pm 0.1\, GeV provided α3c(MZ)\alpha_{3c}(M_Z) is near the low end of its allowed range. In this case, one may make 6 predictions which include Vcb\mid V_{cb}\mid within its 90%90\% confidence limits. However unless the running mass mb>4.4GeVm_b>4.4\, GeV, third generation Yukawa coupling unification requires the top mass to be greater thanComment: 30 pages, 8 figures available on request from [email protected], Late

    Multiple myeloma: managing a complex blood cancer

    No full text

    Monoclonal antibody therapy

    No full text
    corecore