21 research outputs found

    A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cetacea (dolphins, porpoises, and whales) is a clade of aquatic species that includes the most massive, deepest diving, and largest brained mammals. Understanding the temporal pattern of diversification in the group as well as the evolution of cetacean anatomy and behavior requires a robust and well-resolved phylogenetic hypothesis. Although a large body of molecular data has accumulated over the past 20 years, DNA sequences of cetaceans have not been directly integrated with the rich, cetacean fossil record to reconcile discrepancies among molecular and morphological characters.</p> <p>Results</p> <p>We combined new nuclear DNA sequences, including segments of six genes (~2800 basepairs) from the functionally extinct Yangtze River dolphin, with an expanded morphological matrix and published genomic data. Diverse analyses of these data resolved the relationships of 74 taxa that represent all extant families and 11 extinct families of Cetacea. The resulting supermatrix (61,155 characters) and its sub-partitions were analyzed using parsimony methods. Bayesian and maximum likelihood (ML) searches were conducted on the molecular partition, and a molecular scaffold obtained from these searches was used to constrain a parsimony search of the morphological partition. Based on analysis of the supermatrix and model-based analyses of the molecular partition, we found overwhelming support for 15 extant clades. When extinct taxa are included, we recovered trees that are significantly correlated with the fossil record. These trees were used to reconstruct the timing of cetacean diversification and the evolution of characters shared by "river dolphins," a non-monophyletic set of species according to all of our phylogenetic analyses.</p> <p>Conclusions</p> <p>The parsimony analysis of the supermatrix and the analysis of morphology constrained to fit the ML/Bayesian molecular tree yielded broadly congruent phylogenetic hypotheses. In trees from both analyses, all Oligocene taxa included in our study fell outside crown Mysticeti and crown Odontoceti, suggesting that these two clades radiated in the late Oligocene or later, contra some recent molecular clock studies. Our trees also imply that many character states shared by river dolphins evolved in their oceanic ancestors, contradicting the hypothesis that these characters are convergent adaptations to fluvial habitats.</p

    First toothless platanistoid from the early Miocene of Patagonia: the golden age of diversification of the Odontoceti

    No full text
    Lower Miocene outcrops from Patagonia (Gaiman Formation, Burdigalian) may reveal more clues for the yet unknown aspects for this period in the evolution of odontocetes. Here, we present the first toothless platanistoid dolphin from the lower Miocene of Patagonia, Dolgopolis kinchikafiforo, gen. et sp. nov. The specimen includes an incomplete skull, with no mandibles or earbones, but sufficiently different from other named odontocetes to propose a new genus and species. Phylogenetic analyses indicated it is a platanistoid of uncertain position within the group, and that it shares some homoplastic characters with physeteroids and ziphioids. Given the absence of defined alveoli and teeth and an inferred moderately short and wide rostrum, we interpreted this new species as most likely a capture suction feeder. Based on our phylogenetic hypothesis, the optimization of feeding strategies recovered raptorial feeding as the plesiomorphic method, and convergent evolution of capture suction feeders in at least four lineages. Platanistoids recorded all feeding strategies during the late Oligocene-early Miocene, although raptorial is the predominant method. This suggests a partitioning of the ecological niches in the early phases of platanistoid evolution, as well as a high diversification of feeding methods previously underestimated for this period. Thus, ecological adaptations have a strong evolutionary pressure in odontocetes communities and should be further exploredFil: Viglino, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Geología y Paleontología; ArgentinaFil: Gaetán, Carlos Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Geología y Paleontología; ArgentinaFil: Cuitiño, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Geología y Paleontología; ArgentinaFil: Buono, Mónica Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Geología y Paleontología; Argentin
    corecore