11,653 research outputs found

    A web-based tool for teaching pharmacy practice competency

    Get PDF
    Aims to implement and assess the effectiveness of the Strathclyde Computerized Randomized Interactive Prescription Tutor (SCRIPT) in teaching a competency-based undergraduate pharmacy course. Data on students' access to SCRIPT, collected by quantitative electronic data capture, were analyzed to determine student usage patterns and correlations between usage and grades in class assessments. Data on students' perceptions were collected by electronic questionnaire and semistructured interviews. Teaching staff members also were interviewed. Two hundred forty-three students accessed SCRIPT a median of 23 times each. Students accessed SCRIPT predominantly at times outside normal teaching hours and tended to access the tool more often in the 48 hours preceding class assessments. Feedback from students indicated overall satisfaction with the tool to compliment the timetabled teaching sessions but highlighted that more specific feedback on the examples was required. All staff comments were positive. Students and teaching staff members valued SCRIPT as a tool to compliment teaching of the competency-based pharmacy practice classes in the MPharm degree

    Rangeland Carbon Sequestration

    Get PDF
    Terrestrial carbon sequestration is the process through which carbon dioxide (CO2) from the atmosphere is absorbed by trees, plants and crops through photosynthesis, and stored as carbon in biomass (tree trunks, branches, grasses, foliage, and roots) and soils1. Terrestrial carbon sequestration can contribute to offsetting carbon dioxide emissions and mitigating climate change. Over 30% (770 million acres) of U.S. land cover is rangelands, yet in Utah, roughly 80 percent of land cover is rangelands2. Rangelands can be managed to increase soil carbon storage through more equitable distribution of grazing pressure over time and space to reduce forage plant defoliation and increase carbon inputs from standing plants to soils3. The overall ability of rangelands to sequester carbon depends on plant species, soil type, regional climate, topography, and management practice. Even though the per acre carbon sequestration potential of rangelands may be less than that of either forestlands or croplands, the large size of rangelands in Utah and the U.S. suggests a great overall carbon sequestration potential, particularly in below-ground biomass and soils4,5. What does this mean and what role can rangeland owners play in carbon sequestration

    Power distance and migrant nurses: The liminality of acculturation

    Get PDF
    "This is the peer reviewed version of the following article: Choi, MS, Cook, CM, Brunton, MA. Power distance and migrant nurses: The liminality of acculturation. Nurs Inq. 2019; 26:e12311. https://doi.org/10.1111/nin.12311, which has been published in final form at https://doi.org/10.1111/nin.12311. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."Publishe

    Mechanism of Tricalcium Silicate Hydration in the Presence of Polycarboxylate Polymers

    Get PDF
    Abstract: The early-age hydration of cement is inhibited in the presence of comb-shaped polycarboxylate ether (PCE) polymer -- a dispersant commonly added to control rheological properties of fresh cement paste. This study employs a series of microcalorimetry experiments and phase boundary nucleation and growth simulations to elucidate the effects of dosage and molecular architecture of PCE on hydration of tricalcium silicate (Ca3SiO5 or C3S in cement notation), the dominant phase in cement. Results show that PCE -- regardless of its molecular architecture -- suppresses early-age hydration of C3S. PCE-induced retardation becomes increasingly more pronounced as dosage of PCE in the paste increases. Such suppression of C3S hydration has been attributed to adsorption of PCE molecules on silicate surfaces, which inhibit topographical sites of C3S dissolution and Cā€“Sā€“H nucleation, and impede the post-nucleation growth of Cā€“Sā€“H. This study develops a correlation between molecular architecture of PCE and its ability to suppress C3S hydration through quantitative analyses of retardation effects induced by PCEs with different molecular architectures. The numerical equation, describing such correlation, offers a reliable, and, more importantly, a readily quantifiable indicator of PCEā€™s potential to suppress C3S hydration in relation to its dosage and molecular architecture. In the context of practical application of this study, the aforementioned numerical equation can be used to order and rank PCEs -- of various molecular architectures -- on the bases of their potentials to suppress C3S hydration, and to select ones that cause the optimum (i.e., user-desired) extent of hydration suppression

    Modeling and Design Algorithms for Electromagnetic Pumps

    Full text link
    Electromagnetic (EM) induction pumps are used extensively in current and proposed nuclear power systems and industrial molten metal transfer operations. Although the Magnetohydrodynamic (MHD) theory that underlies the operation of these types of pumps has been studied extensively in the past few decades, the design of specific EM pumping systems for specific flow cases requires computational tools and expertise, which is lacking in the U.S. However, for the past two years, researchers at UNLV have been utilizing the TC-1 liquid metal loop system at UNLV and an Annular Linear Induction Pump (ALIP) to drive the liquid metal and to develop such computational tools that will allow the accurate and efficient optimization of EM pump systems for nuclear applications. The research objectives of this task are: ā€¢ A literature review of topics pertinent to EM pump design. These topics include the equations governing the physical phenomena occurring in EM pumps and mathematical algorithms used in modeling these physical phenomena, different EM pump configurations, and the effects of materials properties on pump performance. ā€¢ Development of computational models of the TC-1 loop at UNLV. ā€¢ Evaluation of the computational models through comparison with experimental data taken on the TC-1 loop. ā€¢ A parametric study of the TC-1 loop investigating the pumping efficiency as a function of operating conditions, materials properties, and geometric parameters

    Overcoming Barriers to Addressing Education Problems With Research Design: A Panel Discussion

    Full text link
    A plenary panel session at the 2012 Academic Emergency Medicine consensus conference ā€œEducation Research in Emergency Medicine: Opportunities, Challenges, and Strategies for Successā€ discussed barriers educators face in imagining, designing, and implementing studies to address educational challenges. This proceedings article presents a general approach to getting started in education research. Four examples of studies from the medical education literature that illustrate a distinct way to approach specific research questions are discussed. The study designs used are applicable to a variety of education research problems in emergency medicine ( EM ). Potential applications of studies are discussed, as well as effects and lessons learned.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95428/1/acem12025.pd

    Hand-held optical fiber smartphone spectrometer for classification of vegetable oils

    Full text link
    Ā© OSA 2016. An optical-fiber-based low-cost, hand-held smartphone spectrometer is demonstrated for differentiating vegetable oils. The visible fluorescence spectrum of extra virgin olive oil is found to be significantly different from other oils, thus making forensic identification straightforward

    From one solution of a 3-satisfiability formula to a solution cluster: Frozen variables and entropy

    Full text link
    A solution to a 3-satisfiability (3-SAT) formula can be expanded into a cluster, all other solutions of which are reachable from this one through a sequence of single-spin flips. Some variables in the solution cluster are frozen to the same spin values by one of two different mechanisms: frozen-core formation and long-range frustrations. While frozen cores are identified by a local whitening algorithm, long-range frustrations are very difficult to trace, and they make an entropic belief-propagation (BP) algorithm fail to converge. For BP to reach a fixed point the spin values of a tiny fraction of variables (chosen according to the whitening algorithm) are externally fixed during the iteration. From the calculated entropy values, we infer that, for a large random 3-SAT formula with constraint density close to the satisfiability threshold, the solutions obtained by the survey-propagation or the walksat algorithm belong neither to the most dominating clusters of the formula nor to the most abundant clusters. This work indicates that a single solution cluster of a random 3-SAT formula may have further community structures.Comment: 13 pages, 6 figures. Final version as published in PR

    On Multiphase-Linear Ranking Functions

    Full text link
    Multiphase ranking functions (MĪ¦RFs\mathit{M{\Phi}RFs}) were proposed as a means to prove the termination of a loop in which the computation progresses through a number of "phases", and the progress of each phase is described by a different linear ranking function. Our work provides new insights regarding such functions for loops described by a conjunction of linear constraints (single-path loops). We provide a complete polynomial-time solution to the problem of existence and of synthesis of MĪ¦RF\mathit{M{\Phi}RF} of bounded depth (number of phases), when variables range over rational or real numbers; a complete solution for the (harder) case that variables are integer, with a matching lower-bound proof, showing that the problem is coNP-complete; and a new theorem which bounds the number of iterations for loops with MĪ¦RFs\mathit{M{\Phi}RFs}. Surprisingly, the bound is linear, even when the variables involved change in non-linear way. We also consider a type of lexicographic ranking functions, LLRFs\mathit{LLRFs}, more expressive than types of lexicographic functions for which complete solutions have been given so far. We prove that for the above type of loops, lexicographic functions can be reduced to MĪ¦RFs\mathit{M{\Phi}RFs}, and thus the questions of complexity of detection and synthesis, and of resulting iteration bounds, are also answered for this class.Comment: typos correcte

    Unified force law for granular impact cratering

    Full text link
    Experiments on the low-speed impact of solid objects into granular media have been used both to mimic geophysical events and to probe the unusual nature of the granular state of matter. Observations have been interpreted in terms of conflicting stopping forces: product of powers of projectile depth and speed; linear in speed; constant, proportional to the initial impact speed; and proportional to depth. This is reminiscent of high-speed ballistics impact in the 19th and 20th centuries, when a plethora of empirical rules were proposed. To make progress, we developed a means to measure projectile dynamics with 100 nm and 20 us precision. For a 1-inch diameter steel sphere dropped from a wide range of heights into non-cohesive glass beads, we reproduce prior observations either as reasonable approximations or as limiting behaviours. Furthermore, we demonstrate that the interaction between projectile and medium can be decomposed into the sum of velocity-dependent inertial drag plus depth-dependent friction. Thus we achieve a unified description of low-speed impact phenomena and show that the complex response of granular materials to impact, while fundamentally different from that of liquids and solids, can be simply understood
    • ā€¦
    corecore