5,805 research outputs found
Recommended from our members
Rethinking reactive halogen budgets in the midlatitude lower stratosphere
Current stratospheric models have difficulties in fully explaining the observed midlatitude ozone depletion in the lowermost stratosphere, particularly near the tropopause. Such models assume that only long-lived source gases provide significant contributions to the stratospheric halogen budget, while all the short-lived compounds are removed in the troposphere, the products being rained out. Here we show this assumption to be flawed. Using bromine species as an example, we show that in the lowermost stratosphere, where the observed midlatitude ozone trend maximizes, bromoform (CHBr3) alone likely contributes more inorganic bromine than all the conventional long-lived sources (halons and methyl bromide) combined. Copyright 1999 by the American Geophysical Union
Recommended from our members
A case study of transport of tropical marine boundary layer and lower tropospheric air masses to the northern midlatitude upper troposphere
Low-ozone (<20 ppbv) air masses were observed in the upper troposphere in northern midlatitudes over the eastern United States and the North Atlantic Ocean on several occasions in October 1997 during the NASA Subsonic Assessment, Ozone and Nitrogen Oxide Experiment (SONEX) mission. Three cases of low-ozone air masses were shown to have originated in the tropical Pacific marine boundary layer or lower troposphere and advected poleward along a warm conveyor belt during a synoptic-scale disturbance. The tropopause was elevated in the region with the low-ozone air mass. Stratospheric intrusions accompanied the disturbances. On the basis of storm track and stratospheric intrusion climatologies, such events appear to be more frequent from September through March than the rest of the year. Copyright 2000 by the American Geophysical Union
Factors controlling tropospheric O3, OH, NOx, and SO2 over the tropical Pacific during PEM-Tropics B
Observations over the tropical Pacific during the Pacific Exploratory Mission (PEM)-Tropics B experiment (March-April 1999) are analyzed. Concentrations of CO and long-lived nonmethane hydrocarbons in the region are significantly enhanced due to transport of pollutants from northern industrial continents. This pollutant import also enhances moderately O3 concentrations but not NOx concentrations. It therefore tends to depress OH concentrations over the tropical Pacific. These effects contrast to the large enhancements of O3 and NOx concentrations and the moderate increase of OH concentrations due to biomass burning outflow during the PEM-Tropics A experiment (September-October 1996). Observed CH3I concentrations, as in PEM-Tropics A, indicate that convective mass outflux in the middle and upper troposphere is largely independent of altitude over the tropical Pacific. Constraining a one-dimensiohal model with CH3I observations yields a 10-day timescale for convective turnover of the free troposphere, a factor of 2 faster than during PEM-Tropics A. Model simulated HO2, CH2O, H2O2, and CH3OOH concentrations are generally in agreement with observations. However, simulated OH concentrations are lower (∼25%) than observations above 6 km. Whereas models tend to overestimate previous field measurements, simulated HNO3 concentrations during PEM-Tropics B are too low (a factor of 2-4 below 6 km) compared to observations. Budget analyses indicate that chemical production of O3 accounts for only 50% of chemical loss; significant transport of O3 into the region appears to take place within the tropics. Convective transport of CH3OOH enhances the production of HOx and O3 in the upper troposphere, but this effect is offset by HOx loss due to the scavenging of H2O2. Convective transport and scavenging of reactive nitrogen species imply a necessary source of 0.4-1 Tg yr-1 of NOx in the free troposphere (above 4 km) over the tropics. A large fraction of the source could be from marine lightning. Oxidation of DMS transported by convection from the boundary layer could explain the observed free tropospheric SO2 concentrations over the tropical Pacific. This source of DMS due to convection, however, would imply in the model free tropospheric concentrations much higher than observed. The model overestimate cannot be reconciled using recent kinetics measurements of the DMS-OH adduct reaction at low pressures and temperatures and may reflect enhanced OH oxidation of DMS during convection. Copyright 2001 by the American Geophysical Union
Chemical characteristics of air from different source regions during the second Pacific Exploratory Mission in the Tropics (PEM-Tropics B)
Ten-day backward trajectories are used to determine the origins of air parcels arriving at locations of airborne DC-8 chemical measurements during NASA's second Pacific Exploratory Mission in the Tropics B that was conducted during February-April 1999. Chemical data at sites where the trajectories had a common geographical origin and transport history are grouped together, and statistical measures of chemical characteristics are computed. Temporal changes in potential temperature are used to determine whether trajectories experienced a significant convective influence during the 10-day period. Trajectories describing the aged marine Southern Hemispheric category remain over the South Pacific Ocean during the 10-day period, and their corresponding chemical signature indicates very clean air. The category aged marine air in the Northern Hemisphere is found to be somewhat dirtier. Subdividing its trajectories based on the direction from which the air had traveled is found to be important in explaining the various chemical signatures. Similarly, long-range northern hemispheric trajectories passing over Asia are subdivided depending on whether they had followed a mostly zonal path, had originated near the Indian Ocean, or had originated near Central or South America and subsequently experienced a stratospheric influence. Results show that the chemical signatures of these subcategories are different from each other. The chemical signature of the southern hemispheric long-range transport category apparently exhibits the effects of pollution from Australia, southern Africa, and South America. Parcels originating over Central and northern South America are found to contain the strongest pollution signature of all categories, due to biomass burning and other sources. The convective category exhibits enhanced values of nitrogen species, probably due to emissions from lightning associated with the convection. Values of various species, including peroxides and acids, confirm that parcels were influenced by the removal of soluble gas and particle species due to precipitation. Finally, current results are compared with those from the first PEM-Tropics mission that was conducted in the same region during the southern hemispheric dry season (August-October 1996) when extensive biomass burning occurred. Results show that air samples during PEM-Tropics B are considerably cleaner than those of its dry season counterpart. Copyright 2001 by the American Geophysical Union
Recommended from our members
Seasonal variability of ozone mixing ratios and budgets in the tropical southern Pacific: A GCTM perspective
Recommended from our members
An assessment of western North Pacific ozone photochemistry based on springtime observations from NASA's PEM-West B (1994) and TRACE-P (2001) field studies
The current study provides a comparison of the photochemical environments for two NASA field studies focused on the western North Pacific (PEM-West-B (PWB) and TRACE-P (TP)). These two studies were separated in calendar time by approximately 7 years. Both studies were carried out under springtime conditions, with PWB being launched in 1994 and TP being deployed in 2001 (i.e., 23 February - 15 March 1994 and 10 March-15 April 2001, respectively). Because of the 7-year time separation, these two studies presented a unique scientific opportunity to assess whether evidence could be found to support the Department of Energy\u27s projections in 1997 that increases in anthropogenic emissions from East Asia could reach 5%/yr. Such projections would lead one to the conclusion that a significant shift in the atmospheric photochemical properties of the western North Pacific would occur. To the contrary, the findings from this study support the most recent emission inventory data [Streets et al., 2003] in that they show no significant systematic trend involving increases in any O3 precursor species and no evidence for a significant shift in the level of photochemical activity over the western North Pacific. This conclusion was reached in spite of there being real differences in the concentration levels of some species as well as differences in photochemical activity between PWB and TP. However, nearly all of these differences were shown to be a result of a near 3-week shift in TP\u27s sampling window relative to PWB, thus placing it later in the spring season. The photochemical enhancements seen during TP were most noticeable for latitudes in the range of 25-45°N. Most important among these were increases in J(O1D), OH, and HO2 and values for photochemical ozone formation and destruction, all of which were typically two times larger than those calculated for PWB. A comparison of these airborne results with ozonesonde data from four Japanese stations provided further evidence showing that the 3-week shift in the respective sampling windows of PWB and TP was a likely cause for the differences seen in O3 levels and in photochemical activity between the two airborne studies. Copyright 2003 by the American Geophysical Union
Recommended from our members
Influence of regional-scale anthropogenic emissions on CO2 distributions over the western North Pacific
We report here airborne measurements of atmospheric CO2 over the western North Pacific during the March-April 2001 Transport and Chemical Evolution over the Pacific (TRACE-P) mission. The CO2 spatial distributions were notably influenced by cyclogenesis-triggered transport of regionally polluted continental air masses. Examination of the CO2 to C2H2/CO ratio indicated rapid outflow of combustion-related emissions in the free troposphere below 8 km. Although the highest CO2 mixing ratios were measured within the Pacific Rim region, enhancements were also observed further east over the open ocean at locations far removed from surface sources. Near the Asian continent, discrete plumes encountered within the planetary boundary layer contained up to 393 ppmv of CO2. Coincident enhancements in the mixing ratios of C2Cl4, C2H2, and C2H4 measured concurrently revealed combustion and industrial sources. To elucidate the source distributions of CO2, an emissions database for Asia was examined in conjunction with the chemistry and 5-day backward trajectories that revealed the WNW/W sector of northeast Asia was a major contributor to these pollution events. Comparisons of NOAA/CMDL and JMA surface data with measurements obtained aloft showed a strong latitudinal gradient that peaked between 35° and 40°N. We estimated a net CO2 flux from the Asian continent of approximately 13.93 Tg C day-1 for late winter/early spring with the majority of the export (79%) occurring in the lower free troposphere (2-8 km). The apportionment of the flux between anthropogenic and biospheric sources was estimated at 6.37 Tg C day-1 and 7.56 Tg C day-1, respectively
SUMMERTIME TROPOSPHERIC OBSERVATIONS RELATED TO NXOY DISTRIBUTIONS AND PARTITIONING OVER ALASKA - ARCTIC BOUNDARY-LAYER EXPEDITION 3A
Chemical transport across the ITCZ in the central Pacific during an El Niño-Southern Oscillation cold phase event in March-April 1999
We examine interhemispheric transport processes that occurred over the central Pacific during the PEM-Tropics B mission (PTB) in March-April 1999 by correlating the observed distribution of chemical tracers with the prevailing and anomalous windfields. The Intertropical Convergence Zone (ITCZ) had a double structure during PTB, and interhemispheric mixing occurred in the equatorial region between ITCZ branches. The anomalously strong tropical easterly surface wind had a large northerly component across the equator in the central Pacific, causing transport of aged, polluted air into the Southern Hemisphere (SH) at altitudes below 4 km. Elevated concentrations of chemical tracers from the Northern Hemisphere (NH) measured south of the equator in the central Pacific during PTB may represent an upper limit because the coincidence of seasonal and cold phase ENSO conditions are optimum for this transport. Stronger and more consistent surface convergence between the northeasterly and southeasterly trade winds in the Southern Hemisphere (SH) resulted in more total convective activity in the SH branch of the ITCZ, at about 6° S. The middle troposphere between 4-7 km was a complex shear zone between prevailing northeasterly winds at low altitudes and southwesterly winds at higher altitudes. Persistent anomalous streamline patterns and the chemical tracer distribution show that during PTB most transport in the central Pacific was from SH to NH across the equator in the upper troposphere. Seasonal differences in source strength caused larger interhemispheric gradients of chemical tracers during PTB than during the complementary PEM-Tropics A mission in September-October 1996. Copyright 2001 by the American Geophysical Union
- …
