1,040 research outputs found

    Test-retest reliability of physiotherapists using the action research arm test in chronic stroke

    Get PDF
    Purpose: The aim of this study was to determine whether physiotherapists (PT) scores are consistent over time when using Action Research Arm Test (ARAT) to assess upper limb (UL) function on a videotaped chronic stroke patient. Subjects and Methods: Quantitative correlational study. A convenience-snowball sample of 20 international PT (mean age and experience = 32 ± 6.8 and 7.55 ± 7.4 years) used ARAT to score chronic stroke patient’s UL function, observing a video at baseline and again ≈ 2 weeks later. Two sets of non-parametric ordinal data were assessed with Spearman’s (rho) and the alpha (a) value was set at 0.01. Line of equality, Bland-Altman plots and Wilcoxon signed rank test were also considered. Results: Spearman’s rho was found ≈ 0.78 at a significance level of 0.00. ARAT was scored with a mean difference of 16.6 days and a mean change of 0.6 points was observed. Limits of agreement and coefficient of reproducibility were ±2.3 and ±2.6 respectively. The patient’s arm impairment was categorised as moderate and floor or ceiling effects were not detected. Conclusion: The results suggest that ARAT is consistent, valid and should be used by PT in chronic stroke.<br/

    Monitoring System-Based Flying IoT in Public Health and Sports Using Ant-Enabled Energy-Aware Routing.

    Full text link
    In recent decades, the Internet of flying networks has made significant progress. Several aerial vehicles communicate with one another to form flying ad hoc networks. Unmanned aerial vehicles perform a wide range of tasks that make life easier for humans. However, due to the high frequency of mobile flying vehicles, network problems such as packet loss, latency, and perhaps disrupted channel links arise, affecting data delivery. The use of UAV-enabled IoT in sports has changed the dynamics of tracking and working on player safety. WBAN can be merged with aerial vehicles to collect data regarding health and transfer it to a base station. Furthermore, the unbalanced energy usage of flying things will result in earlier mission failure and a rapid decline in network lifespan. This study describes the use of each UAV's residual energy level to ensure a high level of safety using an ant-based routing technique called AntHocNet. In health care, the use of IoT-assisted aerial vehicles would increase operational performance, surveillance, and automation optimization to provide a smart application of flying IoT. Apart from that, aerial vehicles can be used in remote communication for treatment, medical equipment distribution, and telementoring. While comparing routing algorithms, simulation findings indicate that the proposed ant-based routing protocol is optimal

    Inter-rater reliability of physiotherapists using the Action Research Arm Test in chronic stroke

    Get PDF
    The purpose of this study is to establish whether physiotherapists' ratings are consistent, when using the Action Research Arm Test (ARAT) to score a chronic stroke patient. This was part of a large project establishing the reliability in chronic stroke. This study used a correlational design comparing the association between physiotherapist scores of the same patient, to establish the ARAT's inter-rater reliability. The COSMIN checklist was followed to enhance the methodology of the study. Twenty physiotherapists (8 female and 12 male) aged between 25 and 53 years were selected. There were no participant dropouts or withdrawals. The sample size was normally distributed. The physiotherapists appeared representative of the UK physiotherapy population, with the exception of gender. The distribution of scores showed a normal distribution with standard deviation of score of 1.9. The Kendall's W test showed 0.711 of agreement between the raters. The scores achieved statistical significance showing consistency between physiotherapists' scores with chronic stroke. Limitations of the study were the use of a small single center convenience sample that may reduce the generalizability of the findings. The ARAT is consistent when scored by physiotherapists in a chronic stroke population. The inter-rater reliability range was (0.70 to 0.90) which is categorized as good

    Technico-economic modelling of ground and air source heat pumps in a hot and dry climate

    Get PDF
    In a hot and dry country such as Saudi Arabia, air-conditioning systems consume seventy per cent of the electrical energy. In order to reduce this demand, conventional air-conditioning technology should be replaced by more efficient renewable energy systems. These should be compared to the current standard systems which use air source heat pumps (ASHPs). These have a poor performance when the air temperature is high. In Saudi Arabia, this can be as much as 50 °C. The purpose of this work, therefore, is to simulate and evaluate the performance of ground source heat pumps (GSHPs) compared with systems employing (ASHPs). For the first time, both systems were comprehensively modelled and simulated using the Transient System Simulation (TRNSYS). In addition, the Ground Loop Design (GLD) software was used to design the length of the ground loop heat exchanger. In order to assess this configuration, an evaluation of a model of a single story office building, based on the climatic conditions and geological characteristics that occur in the city of Riyadh in Saudi Arabia was investigated. The period of evaluation was twenty years in order to determine the Coefficient of Performance (COP), Energy Efficiency Ratio (EER) and power consumption. The simulation results show that the GSHP system has a high performance when compared to ASHP. The average annual COP and EER were 4.1 and 15.5 for the GSHP compared to 3.8 and 11 for the ASHP respectively, and the GSHP is a feasible alternative to ASHP with an 11 years payback period with an 18% total cost saving over the simulation period and 36% lower annual energy consumption. The TRNSYS model shows that despite the positive results of the modeling, the high rate of the underground thermal imbalance (88%) could lead to a system failure in the long term

    Sensor-Cloud Architecture: A Taxonomy of Security Issues in Cloud-Assisted Sensor Networks

    Full text link
    The orchestration of cloud computing with wireless sensor network (WSN), termed as sensor-cloud, has recently gained remarkable attention from both academia and industry. It enhances the processing and storage capabilities of the resources-constrained sensor networks in various applications such as healthcare, habitat monitoring, battlefield surveillance, disaster management, etc. The diverse nature of sensor network applications processing and storage limitations on the sensor networks, which can be overcome through integrating them with the cloud paradigm. Sensor-cloud offers numerous benefits such as flexibility, scalability, collaboration, automation, virtualization with enhanced processing and storage capabilities. However, these networks suffer from limited bandwidth, resource optimization, reliability, load balancing, latency, and security threats. Therefore, it is essential to secure the sensor-cloud architecture from various security attacks to preserve its integrity. The main components of the sensor-cloud architecture which can be attacked are: (i) the sensor nodes; (ii) the communication medium; and (iii) the remote cloud architecture. Although security issues of these components are extensively studied in the existing literature; however, a detailed analysis of various security attacks on the sensor-cloud architecture is still required. The main objective of this research is to present state-of-the-art literature in the context of security issues of the sensor-cloud architecture along with their preventive measures. Moreover, several taxonomies of the security attacks from the sensor-cloud's architectural perspective and their innovative solutions are also provided

    Security requirement management for cloud-assisted and internet of things⇔enabled smart city

    Full text link
    The world is rapidly changing with the advance of information technology. The expansion of the Internet of Things (IoT) is a huge step in the development of the smart city. The IoT consists of connected devices that transfer information. The IoT architecture permits on-demand services to a public pool of resources. Cloud computing plays a vital role in developing IoT-enabled smart applications. The integration of cloud computing enhances the offering of distributed resources in the smart city. Improper management of security requirements of cloud-assisted IoT systems can bring about risks to availability, security, performance, confidentiality, and privacy. The key reason for cloud- and IoT-enabled smart city application failure is improper security practices at the early stages of development. This article proposes a framework to collect security requirements during the initial development phase of cloud-assisted IoT-enabled smart city applications. Its three-layered architecture includes privacy preserved stakeholder analysis (PPSA), security requirement modeling and validation (SRMV), and secure cloud-assistance (SCA). A case study highlights the applicability and effectiveness of the proposed framework. A hybrid survey enables the identification and evaluation of significant challenges

    A Centralized Cluster-Based Hierarchical Approach for Green Communication in a Smart Healthcare System

    Full text link
    The emergence of the Internet of Things (IoT) has revolutionized our digital and virtual worlds of connected devices. IoT is a key enabler for a wide range of applications in today's world. For example, in smart healthcare systems, the sensor-embedded devices monitor various vital signs of the patients. These devices operate on small batteries, and their energy need to be utilized efficiently. The need for green IoT to preserve the energy of these devices has never been more critical than today. The existing smart healthcare approaches adopt a heuristic approach for energy conservation by minimizing the duty-cycling of the underlying devices. However, they face numerous challenges in terms of excessive overhead, idle listening, overhearing, and collision. To circumvent these challenges, we have proposed a cluster-based hierarchical approach for monitoring the patients in an energy-efficient manner, i.e., green communication. The proposed approach organizes the monitoring devices into clusters of equal sizes. Within each cluster, a cluster head is designated to gather data from its member devices and broadcast to a centralized base station. Our proposed approach models the energy consumption of each device in various states, i.e., idle, sleep, awake, and active, and also performs the transitions between these states. We adopted an analytical approach for modeling the role of each device and its energy consumption in various states. Extensive simulations were conducted to validate our analytical approach by comparing it against the existing schemes. The experimental results of our approach enhance the network lifetime with a reduced energy consumption during various states. Moreover, it delivers a better quality of data for decision making on the patient's vital signs

    Security, usability, and biometric authentication scheme for electronic voting using multiple keys

    Full text link
    We propose electronic voting authentication scheme, which is a key management mechanism for electronic voting system intended to limit the number of attacks on a polling station and strengthen the security control. The motivation is to diversify security requirements of messages exchanged between polling stations. There are different types of messages exchanged between polling stations and each type of message has different security needs. A security mechanism developed on the basis of a single key is not enough to ensure the diverse security needs of voting network. In electronic voting authentication scheme, every polling station is responsible to support three different types of keys. These are global key, pairwise key, and individual key. The global keys are public keys shared with all polling stations in the voting network. The pairwise key can be used for communication with polling stations. Individual keys will be used for communication with the server. To ensure authentication of local broadcast, electronic voting authentication scheme uses one-way key chains in a well-organized way. The support of source authentication is a visible advantage of this scheme. We examine the authentication of electronic voting authentication scheme on numerous attack models. The measurement demonstrates that electronic voting authentication scheme is very operative in protecting against numerous elegant attacks such as wormhole attack, Sybil attack, and HELLO Flood attack. The proposed system is evaluated and the results demonstrate that the proposed system is practical and secure as compared to the direct recording electronic and manual systems

    Intelligent Detection System Enabled Attack Probability Using Markov Chain in Aerial Networks

    Full text link
    The Internet of Things (IoT) plays an important role to connect people, data, processes, and things. From linked supply chains to big data produced by a large number of IoT devices to industrial control systems where cybersecurity has become a critical problem in IoT-powered systems. Denial of Service (DoS), distributed denial of service (DDoS), and ping of death attacks are significant threats to flying networks. This paper presents an intrusion detection system (IDS) based on attack probability using the Markov chain to detect flooding attacks. While the paper includes buffer queue length by using queuing theory concept to evaluate the network safety. Also, the network scenario will change due to the dynamic nature of flying vehicles. Simulation describes the queue length when the ground station is under attack. The proposed IDS utilizes the optimal threshold to make a tradeoff between false positive and false negative states with Markov binomial and Markov chain distribution stochastic models. However, at each time slot, the results demonstrate maintaining queue length in normal mode with less packet loss and high attack detection
    • …
    corecore