28 research outputs found

    Generation of New Families of Discrete Distributions

    No full text

    Determination of initial electron parameters by means of Monte Carlo simulations for the Siemens Artiste Linac 6 MV photon beam

    No full text
    Aim: In this study, we investigated initial electron parameters of Siemens Artiste Linac with 6 MV photon beam using the Monte Carlo method. Background: It is essential to define all the characteristics of initial electrons hitting the target, i.e. mean energy and full width of half maximum (FWHM)of the spatial distribution intensity, which is needed to run Monte Carlo simulations. The Monte Carlo is the most accurate method for simulation of radiotherapy treatments. Materials and methods: Linac head geometry was modeled using the BEAMnrc code. The phase space files were used as input file to DOSXYZnrc simulation to determine the dose distribution in a water phantom. We obtained percent depth dose curves and the lateral dose profile. All the results were obtained at 100 cm of SSD and for a 10 × 10 cm2 field. Results: We concluded that there existed a good conformity between Monte Carlo simulation and measurement data when we used electron mean energy of 6.3 MeV and 0.30 cm FWHM value as initial parameters. We observed that FWHM values had very little effect on PDD and we found that the electron mean energy and FWHM values affected the lateral dose profile. However, these effects are between tolerance values. Conclusions: The initial parameters especially depend on components of a linac head. The phase space file which was obtained from Monte Carlo Simulation for a linac can be used as calculation of scattering, MLC leakage, to compare dose distribution on patients and in various studies

    Determination of electron energy, spectral width, and beam divergence at the exit window for clinical megavoltage x-ray beams

    No full text
    Monte Carlo simulations of x-ray beams typically take parameters of the electron beam in the accelerating waveguide to be free parameters. In this paper, a methodology is proposed and implemented to determine the energy, spectral width, and beam divergence of the electron source. All treatment head components were removed from the beam path, leaving only the exit window. With the x-ray target and flattener out of the beam, uncertainties in physical characteristics and relative position of the target and flattening filter, and in spot size, did not contribute to uncertainty in the energy. Beam current was lowered to reduce recombination effects. The measured dose distributions were compared with Monte Carlo simulation of the electron beam through the treatment head to extract the electron source characteristics. For the nominal 6 and 18 MV x-ray beams, the energies were 6.51±0.15 and 13.9±0.2 MeV, respectively, with the uncertainties resulting from uncertainties in the detector position in the measurement and in the stopping power in the simulations. Gaussian spectral distributions were used, with full widths at half maximum ranging from 20±4% at 6 MV to 13±4% at 18 MV required to match the fall-off portion of the percent-depth ionization curve. Profiles at the depth of maximum dose from simulations that used the manufacturer-specified exit window geometry and no beam divergence were 2–3 cm narrower than measured profiles. Two simulation configurations yielding the measured profile width were the manufacturer-specified exit window thickness with electron source divergences of 3.3° at 6 MV and 1.8° at 18 MV and an exit window 40% thicker than the manufacturer’s specification with no beam divergence. With the x-ray target in place (and no flattener), comparison of measured to simulated profiles sets upper limits on the electron source divergences of 0.2° at 6 MV and 0.1° at 18 MV. A method of determining source characteristics without mechanical modification of the treatment head, and therefore feasible in clinics, is presented. The energies and spectral widths determined using this method agree with those determined with only the exit window in the beam path
    corecore