14 research outputs found

    Multistep Forecasting Method for Offshore Wind Turbine Power Based on Multi-Timescale Input and Improved Transformer

    No full text
    Wind energy is highly volatile, and large-scale wind power grid integration significantly impacts grid stability. Accurate forecasting of wind turbine power can improve wind power consumption and ensure the economy of the power grid. This paper proposes a multistep forecasting method for offshore wind turbine power based on a multi-timescale input and an improved transformer. First, the wind speed sequence is decomposed by the VMD method to extract adequate timing information and remove the noise, after which the decomposition signals are merged with the rest of the timing features, and the dataset is split according to different timescales. A GRU receives the short-timescale inputs, and the Improved Transformer captures the timing relationship of the long-timescale inputs. Finally, a CNN is used to extract the information of each time point at the output of each branch, and the fully connected layer outputs multistep forecasting results. Experiments were conducted on operation data from four wind turbines located within the offshore wind farm but not near the edge. The results show that the proposed method achieved average errors of 0.0522 in MAE, 0.0084 in MSE, and 0.0907 in RMSE on a four-step forecast. This outperformed comparison methods LSTM, CNN-LSTM, LSTM-Attention, and Informer. The proposed method demonstrates superior forecasting performance and accuracy for multistep offshore wind turbine power forecasting

    Using Transfer Learning and XGBoost for Early Detection of Fires in Offshore Wind Turbine Units

    No full text
    To improve the power generation efficiency of offshore wind turbines and address the problem of high fire monitoring and warning costs, we propose a data-driven fire warning method based on transfer learning for wind turbines in this paper. This paper processes wind turbine operation data in a SCADA system. It uses an extreme gradient-boosting tree (XGBoost) algorithm to build an offshore wind turbine unit fire warning model with a multiparameter prediction function. This paper selects some parameters from the dataset as input variables for the model, with average cabin temperature, average outdoor temperature, average cabin humidity, and average atmospheric humidity as output variables. This paper analyzes the distribution information of input and output variables and their correlation, analyzes the predicted difference, and then provides an early warning for wind turbine fires. This paper uses this fire warning model to transfer learning to different models of offshore wind turbines in the same wind farm to achieve fire warning. The experimental results show that the prediction performance of the multiparameter is accurate, with an average MAPE of 0.016 and an average RMSE of 0.795. It is better than the average MAPE (0.051) and the average RMSE (2.020) of the prediction performance of a backpropagation (BP) neural network, as well as the average MAPE (0.030) and the average RMSE (1.301) of the prediction performance of random forest. The transfer learning model has good prediction performance, with an average MAPE of 0.022 and an average RMSE of 1.469
    corecore