2 research outputs found
A Smart Bluetooth-based Ad Hoc Management System for Appliances in Home Environments
The number of home devices integrating new technologies is continuously increasing. These advances allow us to improve our daily routines. In addition, the improvement in network infrastructure and the development of smart phones and mobile devices allow us access from any place to any of our systems over the Internet. Bearing in mind this idea, we have developed a low-cost ad hoc protocol based on Bluetooth technology that allows us to control all our home appliances and monitor the power consumption of our homes. Our proposal is based on an Android application installed on a mobile device which acts as server. The application allows users to program the various appliances. It is also able to check the status of the appliance, as well as controlling the power consumption of the house and its cost. The system is equipped with a smart algorithm able to manage all appliances and decide which ones should work as a function of various criteria such as time of day or power consumption. Finally, the system is able to detect faults in water and electricity supply for acting accordingly. All data received and sent by the server are stored in a database which the system can check and compare to make their own decisions.Sendra, S.; Laborda, A.; DĂaz Santos, JR.; Lloret, J. (2015). A Smart Bluetooth-based Ad Hoc Management System for Appliances in Home Environments. Springer Verlag (Germany): LNCS. 8487:128-141. doi:10.1007/978-3-319-07425-2_10S1281418487Garcia, M., Sendra, S., Lloret, J., Canovas, A.: Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Telecommunication Systems 52(4), 2489–2502 (2013)Liu, Y., Zhou, G.: Technologies and Applications of Internet of Things. In: Proceedings of 2012 Fifth International Conference on Intelligent Computation Technology and Automation (ICICTA), Zhangjiajie, China, January 12-14, pp. 197–200 (2012)Aiello, M.: The Role of Web Services at Home. In: Proceedings of the Advanced International Conference on Telecommunications and International Conference on Internet and Web Applications and Services (AICT-ICIW 2006), Guadeloupe, France, February 23-25 (2006)Mowafi, M.Y., Awad, F.H., Al-Batati, M.A.: Opportunistic Network Coding for Real-Time Transmission over Wireless Networks. Network Protocols and Algorithms 5(1), 1–19 (2013)Gangadhar, G., Nayak, S., Puttamadappa, C.: Intelligent Refrigerator with monitoring capability through internet. International Journal of Computer Applications. Special Issue on “Wireless Information Networks & Business Information System 2(7), 65–68 (2011)Soucek, S., Russ, G., Tamarit, C.: The Smart Kitchen Project—An Application of Fieldbus Technology to Domotics. In: Proceedings of 2nd International Workshop on Networked Appliances (IWNA 2000), New Brunswick, NJ, USA, November 30-December 1 (2000)Zhang, W., Tan, G.-Z., Ding, N.: Traffic Information Detection Based on Scattered Sensor Data: Model and Algorithms. Adhoc & Sensor Wireless Networks 18(3-4), 225–240 (2013)Ranjit, J.S., Shin, S.: A Modified IEEE 802.15. 4 Superframe Structure for Guaranteed Emergency Handling in Wireless Body Area Network. Network Protocols & Algorithms 5(2), 1–15 (2013)Braeken, A., Singelee, D.: Efficient and Location-Private Communication Protocols for WBSNs. Adhoc & Sensor Wireless Networks 19(3-4), 305–326 (2013)Augusto, J.C., McCullagh, P., McClelland, V., Walkden, J.A.: Enhanced healthcare provision through assisted decision-making in a smart home environment. In: Proceedings of the Second Workshop on Artificial Intelligence Techniques for Ambient Intelligence (AITAmI 2007), Hyderabad, India, January 6-7 (2007)Zhang, L., Zhao, Z., Li, D., Liu, Q., Cui, L.: Wildlife Monitoring Using Heterogeneous Wireless Communication Network. Adhoc & Sensor Wireless Networks 18(3-4), 159–179 (2013)Viani, F., Robol, F., Polo, A., Rocca, P., Oliveri, G., Massa, A.: Wireless Architectures for Heterogeneous Sensing in Smart Home Applications: Concepts and Real Implementation. Proceedings of the IEEE 101(11), 2381–2396 (2013)Lloret, J., MacĂas, E., Suárez, A., Lacuesta, R.: Ubiquitous Monitoring of Electrical Household Appliances. Sensors 12(11), 15159–15191 (2012)Kamilaris, A., Trifa, V., Pitsillides, A.: The smart home meets the Web of Things. International Journal of Ad Hoc and Ubiquitous Computing 7(3), 145–154 (2011)Kamilaris, A., Trifa, V., Pitsillides, A.: An Application Framework for Web-Based Smart Homes. In: Proceedings of the 18th International Conference on Telecommunications, ICT 2011, Ayia Napa, Cyprus, May 8-11, pp. 134–139 (2011)IEEE Std 802.15.1-2002 – IEEE Standard for Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements Part 15.1: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs)KNX international Site, http://www.knx.org/knx-en/index.php (last access: February 1, 2014)LonWorks Technology. In: ECHELON web site, http://www.echelon.com/technology/lonworks/ (last access: February 1, 2014)X10 protocol. In: X10 web site, http://x10-lang.org/ (last access: February 1, 2014)Rohini Basak, R., Sardar, B.: Security in Network Mobility (NEMO): Issues, Solutions, Classification, Evaluation, and Future Research Directions. Network Protocols and Algorithms 5(2), 87–111 (2013