24 research outputs found

    GluN2B and GluN2D NMDARs dominate synaptic responses in the adult spinal cord

    Get PDF
    The composition of the postsynaptic ionotropic receptors that receive presynaptically released transmitter is critical not only for transducing and integrating electrical signals but also for coordinating downstream biochemical signaling pathways. At glutamatergic synapses in the adult CNS an overwhelming body of evidence indicates that the NMDA receptor (NMDAR) component of synaptic responses is dominated by NMDARs containing the GluN2A subunit, while NMDARs containing GluN2B, GluN2C, or GluN2D play minor roles in synaptic transmission. Here, we discovered NMDAR-mediated synaptic responses with characteristics not described elsewhere in the adult CNS. We found that GluN2A-containing receptors contribute little to synaptic NMDAR responses while GluN2B dominates at synapses of lamina I neurons in the adult spinal cord. In addition, we provide evidence for a GluN2D-mediated synaptic NMDAR component in adult lamina I neurons. Strikingly, the charge transfer mediated by GluN2D far exceeds that of GluN2A and is comparable to that of GluN2B. Lamina I forms a disti

    Potentiation of Synaptic GluN2B NMDAR Currents by Fyn Kinase Is Gated through BDNF-Mediated Disinhibition in Spinal Pain Processing

    Get PDF
    In chronic pain states, the neurotrophin brain-derived neurotrophic factor (BDNF) transforms the output of lamina I spinal neurons by decreasing synaptic inhibition. Pain hypersensitivity also depends on N-methyl-D-aspartate receptors (NMDARs) and Src-family kinases, but the locus of NMDAR dysregulation remains unknown. Here, we show that NMDAR-mediated currents at lamina I synapses are potentiated in a peripheral nerve injury model of neuropa

    Resistin induces lipolysis and re-esterification of triacylglycerol stores, and increases cholesteryl ester deposition, in human macrophage

    Get PDF
    Human resistin, found within atheroma, exerts inflammatory, angiogenic and proliferative effects in vascular cells and may predict coronary events. Here, we investigate mechanisms by which resistin contributes to macrophage ‘foam cell’ formation. Increases in macrophage (THP-1) cholesteryl ester mass, in the presence or absence of oxidized LDL, were not explained by altered cholesterol efflux. Instead, resistin enhanced fractional turnover of the endogenous triacylglycerol pool, increased uptake and decreased oxidation of exogenous fatty acids, and decreased phosphorylation of acetyl CoA carboxylase, all factors increasing the availability of fatty acyl CoA substrate for acyl CoA: cholesterol acyltransferase-1, thereby enhancing macrophage cholesteryl ester deposition
    corecore