17 research outputs found

    Collaborative Systems Thinking: Towards an Understanding of Team-level Systems Thinking

    Get PDF
    As the engineering workforce ages, skills with long development periods are lost with retiring individuals faster than are younger engineers developing the skills. Systems thinking is one such skill. Recent research, (Davidz 2006), has shown the importance of experiential learning in systems thinking skill development. However, an engineering career begun today has fewer program experiences than in past decades because of extended program lifecycles and a reduction in the number of new large-scale engineering programs. This pattern is clearly visible in the aerospace industry, which (Stephens 2003) cites as already experiencing a systems thinking shortage. The ongoing research outlined in this paper explores systems thinking as an emergent property of teams. Collaborative systems thinking, a term coined by the authors to denote teamlevel systems thinking, may offer an opportunity to leverage and develop a skill in short supply by concentrating on the team in addition to the individual. This paper introduces the proposed definition for collaborative systems thinking, as developed by the authors, and the outlines the structure and progress of ongoing case research into the role of organizational culture and standard process usage in the development of collaborative systems thinking

    Direct Numerical Simulation of Turbulent Heat Transfer Modulation in Micro-Dispersed Channel Flow

    Full text link
    The object of this paper is to study the influence of dispersed micrometer size particles on turbulent heat transfer mechanisms in wall-bounded flows. The strategic target of the current research is to set up a methodology to size and design new-concept heat transfer fluids with properties given by those of the base fluid modulated by the presence of dynamically-interacting, suitably-chosen, discrete micro- and nano- particles. We run Direct Numerical Simulation (DNS) for hydrodynamically fully-developed, thermally-developing turbulent channel flow at shear Reynolds number Re=150 and Prandtl number Pr=3, and we tracked two large swarms of particles, characterized by different inertia and thermal inertia. Preliminary results on velocity and temperature statistics for both phases show that, with respect to single-phase flow, heat transfer fluxes at the walls increase by roughly 2% when the flow is laden with the smaller particles, which exhibit a rather persistent stability against non-homogeneous distribution and near-wall concentration. An opposite trend (slight heat transfer flux decrease) is observed when the larger particles are dispersed into the flow. These results are consistent with previous experimental findings and are discussed in the frame of the current research activities in the field. Future developments are also outlined.Comment: Pages: 305-32

    The dispersive effects of Basset History forces on particle motion in a turbulent fluid

    No full text
    SIGLELD:3106.076(CEGB-RD/B/N--4864) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore