1,050 research outputs found

    Decoherence in circuits of small Josephson junctions

    Full text link
    We discuss dephasing by the dissipative electromagnetic environment and by measurement in circuits consisting of small Josephson junctions. We present quantitative estimates and determine in which case the circuit might qualify as a quantum bit. Specifically, we analyse a three junction Cooper pair pump and propose a measurement to determine the decoherence time τϕ\tau_\phi.Comment: 4 pages, 4 figure

    An intelligent alarm management system for large-scale telecommunication companies

    Get PDF
    This paper introduces an intelligent system that performs alarm correlation and root cause analysis. The system is designed to operate in large- scale heterogeneous networks from telecommunications operators. The pro- posed architecture includes a rules management module that is based in data mining (to generate the rules) and reinforcement learning (to improve rule se- lection) algorithms. In this work, we focus on the design and development of the rule generation part and test it using a large real-world dataset containing alarms from a Portuguese telecommunications company. The correlation engine achieved promising results, measured by a compression rate of 70% and as- sessed in real-time by experienced network administrator staff

    Item to Skills Mapping: Deriving a Conjunctive Q-matrix from Data

    Full text link

    Measurement of coherent charge transfer in an adiabatic Cooper pair pump

    Get PDF
    We study adiabatic charge transfer in a superconducting Cooper pair pump, focusing on the influence of current measurement on coherence. We investigate the limit where the Josephson coupling energy EJE_J between the various parts of the system is small compared to the Coulomb charging energy ECE_C. In this case the charge transferred in a pumping cycle QP2eQ_P \sim 2e, the charge of one Cooper pair: the main contribution is due to incoherent Cooper pair tunneling. We are particularly interested in the quantum correction to QPQ_P, which is due to coherent tunneling of pairs across the pump and which depends on the superconducting phase difference ϕ0\phi_0 between the electrodes: 1QP/(2e)(EJ/EC)cosϕ01-Q_P/(2e) \sim (E_J/E_C) \cos \phi_0. A measurement of QPQ_P tends to destroy the phase coherence. We first study an arbitrary measuring circuit and then specific examples and show that coherent Cooper pair transfer can in principle be detected using an inductively shunted ammeter

    Cross-Lingual Semantic Similarity Measure for Comparable Articles

    Get PDF
    International audienceWe aim in this research to find and compare crosslingual articles concerning a specific topic. So, we need measure for that. This measure can be based on bilingual dictionaries or based on numerical methods such as Latent Semantic Indexing (LSI). In this paper, we use the LSI in two ways to retrieve Arabic-English comparable articles. The first one is monolingual: the English article is translated into Arabic and then mapped into the Arabic LSI space; the second one is crosslingual: Arabic and English documents are mapped into Arabic-English LSI space. Then, we compare LSI approaches to the dictionary-based approach on several English-Arabic parallel and comparable corpora. Results indicate that the performance of cross-lingual LSI approach is competitive to monolingual approach, or even better for some corpora. Moreover, both LSI approaches outperform the dictionary approach

    Weak-Localization in Chaotic Versus Non-Chaotic Cavities: A Striking Difference in the Line Shape

    Full text link
    We report experimental evidence that chaotic and non-chaotic scattering through ballistic cavities display distinct signatures in quantum transport. In the case of non-chaotic cavities, we observe a linear decrease in the average resistance with magnetic field which contrasts markedly with a Lorentzian behavior for a chaotic cavity. This difference in line-shape of the weak-localization peak is related to the differing distribution of areas enclosed by electron trajectories. In addition, periodic oscillations are observed which are probably associated with the Aharonov-Bohm effect through a periodic orbit within the cavities.Comment: 4 pages revtex + 4 figures on request; amc.hub.94.

    Approach to ergodicity in quantum wave functions

    Full text link
    According to theorems of Shnirelman and followers, in the semiclassical limit the quantum wavefunctions of classically ergodic systems tend to the microcanonical density on the energy shell. We here develop a semiclassical theory that relates the rate of approach to the decay of certain classical fluctuations. For uniformly hyperbolic systems we find that the variance of the quantum matrix elements is proportional to the variance of the integral of the associated classical operator over trajectory segments of length THT_H, and inversely proportional to TH2T_H^2, where TH=hρˉT_H=h\bar\rho is the Heisenberg time, ρˉ\bar\rho being the mean density of states. Since for these systems the classical variance increases linearly with THT_H, the variance of the matrix elements decays like 1/TH1/T_H. For non-hyperbolic systems, like Hamiltonians with a mixed phase space and the stadium billiard, our results predict a slower decay due to sticking in marginally unstable regions. Numerical computations supporting these conclusions are presented for the bakers map and the hydrogen atom in a magnetic field.Comment: 11 pages postscript and 4 figures in two files, tar-compressed and uuencoded using uufiles, to appear in Phys Rev E. For related papers, see http://www.icbm.uni-oldenburg.de/icbm/kosy/ag.htm

    Semiclassical Theory of Coulomb Blockade Peak Heights in Chaotic Quantum Dots

    Full text link
    We develop a semiclassical theory of Coulomb blockade peak heights in chaotic quantum dots. Using Berry's conjecture, we calculate the peak height distributions and the correlation functions. We demonstrate that the corrections to the corresponding results of the standard statistical theory are non-universal and can be expressed in terms of the classical periodic orbits of the dot that are well coupled to the leads. The main effect is an oscillatory dependence of the peak heights on any parameter which is varied; it is substantial for both symmetric and asymmetric lead placement. Surprisingly, these dynamical effects do not influence the full distribution of peak heights, but are clearly seen in the correlation function or power spectrum. For non-zero temperature, the correlation function obtained theoretically is in good agreement with that measured experimentally.Comment: 5 color eps figure

    Probing the dark matter issue in f(R)-gravity via gravitational lensing

    Full text link
    For a general class of analytic f(R)-gravity theories, we discuss the weak field limit in view of gravitational lensing. Though an additional Yukawa term in the gravitational potential modifies dynamics with respect to the standard Newtonian limit of General Relativity, the motion of massless particles results unaffected thanks to suitable cancellations in the post-Newtonian limit. Thus, all the lensing observables are equal to the ones known from General Relativity. Since f(R)-gravity is claimed, among other things, to be a possible solution to overcome for the need of dark matter in virialized systems, we discuss the impact of our results on the dynamical and gravitational lensing analyses. In this framework, dynamics could, in principle, be able to reproduce the astrophysical observations without recurring to dark matter, but in the case of gravitational lensing we find that dark matter is an unavoidable ingredient. Another important implication is that gravitational lensing, in the post-Newtonian limit, is not able to constrain these extended theories, since their predictions do not differ from General Relativity.Comment: 7 pages, accepted for publication in EPJ
    corecore