19 research outputs found

    Josephson vortex loops in nanostructured Josephson junctions

    Get PDF
    Linked and knotted vortex loops have recently received a revival of interest. Such three-dimensional topological entities have been observed in both classical- and super-fluids, as well as in optical systems. In superconductors, they remained obscure due to their instability against collapse – unless supported by inhomogeneous magnetic field. Here we reveal a new kind of vortex matter in superconductors - the Josephson vortex loops - formed and stabilized in planar junctions or layered superconductors as a result of nontrivial cutting and recombination of Josephson vortices around the barriers for their motion. Engineering latter barriers opens broad perspectives on loop manipulation and control of other possible knotted/linked/entangled vortex topologies in nanostructured superconductors. In the context of Josephson devices proposed to date, the high-frequency excitations of the Josephson loops can be utilized in future design of powerful emitters, tunable filters and waveguides of high-frequency electromagnetic radiation, thereby pushing forward the much needed Terahertz technology

    Parametric amplification of vortex-antivortex pair generation in a Josephson junction

    Get PDF
    Using advanced three-dimensional simulations, we show that an Abrikosov vortex, trapped inside a cavity perpendicular to an artificial Josephson junction, can serve as a very efficient source for generation of Josephson vortex-antivortex pairs in the presence of the applied electric current. In such a case, the nucleation rate of the pairs can be tuned in a broad range by an out-of-plane ac magnetic field in a broad range of frequencies. This parametrically amplified vortex-antivortex nucleation can be considered as a macroscopic analog of the dynamic Casimir effect, where fluxon pairs mimic the photons and the ac magnetic field plays the role of the oscillating mirrors. The emerging vortex pairs in our system can be detected by the pronounced features in the measured voltage characteristics, or through the emitted electromagnetic radiation, and exhibit resonant dynamics with respect to the frequency of the applied magnetic field. Reported tunability of the Josephson oscillations can be useful for developing high-frequency emission devices

    Anti-corruption policy in a socio-cultural space: indicators and actual strategies

    Get PDF
    The paper proposes a discussion of an essence, modern interpretation and directions of counteraction to corruption interaction. The paper analyzes wide (sociological) and narrow (formal-legal) approaches to the interpretation of corruption interaction, examines the causes and forms that activate the development of corruption in the post-Soviet space. The authors singled out and analyzed key aspects of the modern anticorruption policy carried out in Russia at the beginning of the 21st century. The author's vision of the content of the anti-corruption legislation is separately argued, specific proposals are formulated to improve the legislation in the conditions of an unstable legal system and a transitional state, and the basic guidelines for its further development are determined

    Topological Landau-Ginzburg theory with a rational potential and the dispersionless KP hierarchy

    Get PDF
    Based on the dispersionless KP (dKP) theory, we give a comprehensive study of the topological Landau-Ginzburg (LG) theory characterized by a rational potential. Writing the dKP hierarchy in a general form, we find that the hierarchy naturally includes the dispersionless (continuous) limit of Toda hierarchy and its generalizations having finite number of primaries. Several flat solutions of the topological LG theory are obtained in this formulation, and are identified with those discussed by Dubrovin. We explicitly construct gravitational descendants for all the primary fields. Giving a residue formula for the 3-point functions of the fields, we show that these 3-point functions satisfy the topological recursion relation. The string equation is obtained as the generalized hodograph solutions of the dKP hierarchy, which show that all the gravitational effects to the constitutive equations (2-point functions) can be renormalized into the coupling constants in the small phase space.Comment: 54 pages, Plain TeX. Figure could be obtained from Kodam

    Renormalization group flows and continual Lie algebras

    Full text link
    We study the renormalization group flows of two-dimensional metrics in sigma models and demonstrate that they provide a continual analogue of the Toda field equations based on the infinite dimensional algebra G(d/dt;1). The resulting Toda field equation is a non-linear generalization of the heat equation, which is integrable in target space and shares the same dissipative properties in time. We provide the general solution of the renormalization group flows in terms of free fields, via Backlund transformations, and present some simple examples that illustrate the validity of their formal power series expansion in terms of algebraic data. We study in detail the sausage model that arises as geometric deformation of the O(3) sigma model, and give a new interpretation to its ultra-violet limit by gluing together two copies of Witten's two-dimensional black hole in the asymptotic region. We also provide some new solutions that describe the renormalization group flow of negatively curved spaces in different patches, which look like a cane in the infra-red region. Finally, we revisit the transition of a flat cone C/Z_n to the plane, as another special solution, and note that tachyon condensation in closed string theory exhibits a hidden relation to the infinite dimensional algebra G(d/dt;1) in the regime of gravity. Its exponential growth holds the key for the construction of conserved currents and their systematic interpretation in string theory, but they still remain unknown.Comment: latex, 73pp including 14 eps fig
    corecore