24 research outputs found

    Microstructural and Chemical Rejuvenation of a Ni-Based Superalloy

    Get PDF
    This is an open access article published by Springer and distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), http://creativecommons.org/licenses/by/4.0/The microstructural evolution of the Ni-based superalloy CMSX-4 including the change in gamma prime morphology, size and distribution after high temperature degradation and subsequent rejuvenation heat treatments has been examined using field emission gun scanning electron microscopy (FEGSEM) and transmission electron microscopy (TEM). In this paper it is shown that there are significant differences in the size of the ‘channels’ between gamma prime particles, the degree of rafting and the size of tertiary gamma prime particles in each of the different microstructural conditions studied. Chemical analysis has been carried out to compare rejuvenated and pre-service samples after the same subsequent degradation procedure. The results indicate that although the microstructure of pre-service and rejuvenated samples are similar, chemical differences are more pronounced in the rejuvenated samples, suggesting that chemical segregation from partitioning of the elements was not completely eliminated through the applied rejuvenation heat treatment. A number of modified rejuvenation heat treatment trials were carried out to reduce the chemical segregation prior to creep testing. The creep test results suggest that chemical segregation has an immeasurable influence on the short-term mechanical properties under the test conditions used here, indicating that further work is required to fully understand the suitability of specific rejuvenation heat treatments and their role in the extension of component life in power plant applications

    Nanophononics: state of the art and perspectives

    Full text link

    Evaluation of antigen detection and antibody detection tests for Trypanosoma evansi infections of buffaloes in Indonesia

    No full text
    Two Ag-ELISAs, an IgG-specific antibody detection ELISA (IgG ELISA) and a card agglutination test (CATT) for the detection of Trypanosoma evansi infections in buffaloes in Indonesia, were compared. Diagnostic sensitivity estimates were obtained by testing sera from 139 Indonesian buffaloes which had been found to be infected by parasitological tests. Diagnostic specificity was estimated by testing sera from 263 buffaloes living in Australia. Response-operating characteristic curves were constructed, and optimal ELISA cut-off values, which minimized the number of false-negative and false-positive results, were chosen. The IgG ELISA had the highest sensitivity (89 percent) and the CATT had the highest specificity (100 percent). There was a significant difference between the sensitivities (71 and 81 percent), but not between the specificities (75 and 78 percent), of the two Ag-ELISAs. The four tests were further compared by calculation of post-test probabilities of infection for positive and negative test results using a range of prevalence values, and likelihood ratios. The results suggested that the CATT was the best test to `rule-in' infection (i.e. the highest probability of infection in test-positive animals) and the IgG ELISA was the best test to `rule-out' infection (i.e. the lowest probability of infection in test-negative animals)
    corecore