44 research outputs found

    Entropy-Corrected New Agegraphic Dark Energy Model in Horava-Lifshitz Gravity

    Full text link
    In this work, we have considered the entropy-corrected new agegraphic dark energy (ECNADE) model in Horava-Lifshitz gravity in FRW universe. We have discussed the correspondence between ECNADE and other dark energy models such as DBI-essence,Yang-Mills dark energy, Chameleon field, Non-linear electrodynamics field and hessence dark energy in the context of Horava-Lifshitz gravity and reconstructed the potentials and the dynamics of the scalar field theory which describe the ECNADE.Comment: 12 page

    Interacting Ricci Dark Energy with Logarithmic Correction

    Full text link
    Motivated by the holographic principle, it has been suggested that the dark energy density may be inversely proportional to the area AA of the event horizon of the universe. However, such a model would have a causality problem. In this work, we consider the entropy-corrected version of the holographic dark energy model in the non-flat FRW universe and we propose to replace the future event horizon area with the inverse of the Ricci scalar curvature. We obtain the equation of state (EoS) parameter ωΛ\omega_{\Lambda}, the deceleration parameter qq and ΩD′\Omega_D' in the presence of interaction between Dark Energy (DE) and Dark Matter (DM). Moreover, we reconstruct the potential and the dynamics of the tachyon, K-essence, dilaton and quintessence scalar field models according to the evolutionary behavior of the interacting entropy-corrected holographic dark energy model.Comment: 24 pages, accepted for publication in 'Astrophysics and Space Science, DOI:10.1007/s10509-012-1031-8

    Statefinder Parameters for Different Dark Energy Models with Variable G Correction in Kaluza-Klein Cosmology

    Full text link
    In this work, we have calculated the deceleration parameter, statefinder parameters and EoS parameters for different dark energy models with variable GG correction in homogeneous, isotropic and non-flat universe for Kaluza-Klein Cosmology. The statefinder parameters have been obtained in terms of some observable parameters like dimensionless density parameter, EoS parameter and Hubble parameter for holographic dark energy, new agegraphic dark energy and generalized Chaplygin gas models.Comment: 9 pages, no figure, accepted for publication in IJTP. arXiv admin note: text overlap with arXiv:1104.2366 by other author

    Statefinder Description in Generalized Holographic and Ricci Dark Energy Models

    Full text link
    We have considered the generalized holographic and generalized Ricci dark energy models for acceleration of the universe. If the universe filled with only GHDE/GRDE the corresponding decel- eration parameter, EOS parameter and statefinder parameters have been calculated. Next we have considered that the mixture of GHDE/GRDE and dark matter in interacting and non-interacting situations. Also the mixture of GHDE/GRDE and generalized Chaplygin gas have been analyzed during evolution of the universe. The natures of above mentioned parameters have been investigated for interacting and non-interacting situations. Finally, it follows that the prescribed models derive the acceleration of the universe.Comment: 18 pages and 19 figure

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions. Funding: Bill & Melinda Gates Foundation
    corecore