6 research outputs found

    Comparison of photosynthetically active radiation and cover estimation for measuring the effects of interspecific competition on jack pine seedlings

    No full text
    Using an additive-density study with 10 woody and herbaceous plant species of the boreal forest, we compared equations predicting the biomass growth of jack pine (Pinus banksiana Lamb.) seedlings using measurements of photosynthetically active radiation (PAR) transmission and visual estimates of vegetation cover. Nonlinear regression equations accounted for between 77 and 83% of the variation in the annual biomass increment of jack pine when all competing species were combined. Our objective was to determine whether measuring PAR provided any advantage over cover estimation for predicting the effects of interspecific competition. We found no difference in the predictive ability of visual cover estimates and either a single PAR measurement at the point of maximum canopy development or repeated PAR measurements throughout the growing season. Results were consistent among experimental plots that contained a variety of competing plant species with different growth forms. Measurements of PAR transmission once during the growing season performed as well as PAR measurements taken throughout the growing season. Although the precision of plant cover estimates in vegetation sampling has been a concern for some time, high variation in PAR measurements can be created by sensor location sensitivity, narrow sampling windows, and the need for sensor calibration

    Biomass equations for Brazilian semiarid caatinga plants Equações para estimar a biomassa de plantas da caatinga do semi-árido brasileiro

    No full text
    Allometric equations to estimate total aboveground alive biomass (B) or crown projection area (C) of ten caatinga species based on plant height (H) and/or stem diameter at ground level (DGL) or at breast height (DBH) were developed. Thirty plants of each species, covering the common range of stem diameters (3 to 50 cm), were measured (C, H, DGL, DBH), cut at the base, separated into parts, weighted and subsampled to determine dry biomass. Wood density (p) of the stem and the largest branches was determined. B, C, H and p ranged from 1 to 500 kg, 0.2 to 112 m², 1.3 to 11.8 m, and 0.45 to 1.03 g cm-3. Biomass of all 10 species, separately or together (excluding one cactus species), could be estimated with high coefficients of determination (R²) using the power equation (B = aDGLb) and DGL, DBH, H or combinations of diameter, height and density. Improvement by multiplying H and/or p to DGL or DBH was small. The mixed-species equation based only on DBH (valid up to 30 cm) had a = 0.173 and b = 2.295, similar to averages of these parameters found in the literature but slightly lower than most of those for humid tropical vegetation. Crown area was significantly related to diameter, height and biomass.<br>Equações alométricas foram desenvolvidas para estimar a biomassa aérea viva (B) e a área de projeção da copa (C) de dez espécies da caatinga, com base na altura da planta (H) e/ou do diâmetro do caule ao nível do solo (DNS) ou à altura do peito (DAP). Trinta plantas de cada espécie, cobrindo a faixa usual de diâmetros (3 a 50 cm), foram medidas (C, H, DNS, DAP), cortadas na base, separadas em partes, pesadas e subamostradas para determinação da biomassa seca. A densidade (p) da madeira dos caules e galhos maiores foi determinada. B, C, H e p variaram de 1 a 500 kg, 0,2 a 112 m², 1,3 a 11,8 m e 0,45 a 1,03 g cm-3. A biomassa das 10 espécies, separadamente ou em conjunto (exceto pela espécie de Cactaceae), foi estimada com alto coeficiente de determinação (R²), usando a equação de potência (B = aDNSb) e DNS, DAP ou combinações de diâmetro, altura e densidade. A melhora com a multiplicação de DNS ou DAP por H e/ou p foi pequena. A equação de DAP (válida até 30 cm) para o conjunto das nove espécies teve a = 0,173 e b = 2,295, semelhantes aos valores das médias das equações encontradas na literatura, mas um pouco abaixo dos referidos para vegetação tropical úmida. A projeção das copas foi significativamente relacionada com diâmetros do caule, alturas e biomassas

    Predicting and managing light in the understory of boreal forests

    No full text
    corecore