2 research outputs found

    A New Split Hand/Foot Malformation with Long Bone Deficiency Familial Case.

    No full text
    Split hand/foot malformation with long bone deficiency (SHFLD) is a congenital limb anomaly where hands and/or feet cleft and syndactyly are associated with long bone defects, usually involving the tibia. Previously published data reported that 17p13.3 chromosomal duplication, including the BHLHA9 gene, has been associated with the distinct entity, termed SHFLD3 (OMIM 612576), inherited as an autosomal dominant trait. Here, we present a family with three members affected by SHFLD harboring BHLHA9 duplication. We exploited in vitro differentiation system to promote proband's skin fibroblasts toward osteoblastic lineage, and we observed a slight but consistent delay in the mineralization pattern. This result possibly suggests an impairment of the osteogenic process in the affected members

    TRIM8 downregulation in glioma affects cell proliferation and it is associated with patients survival

    Get PDF
    Background: Human gliomas are a heterogeneous group of primary malignant brain tumors whose molecular pathogenesis is not yet solved. In this regard, a major research effort has been directed at identifying novel specific glioma-associated genes. Here, we investigated the effect of TRIM8 gene in glioma. Methods: TRIM8 transcriptional level was profiled in our own glioma cases collection by qPCR and confirmed in the independent TCGA glioma cohort. The association between TRIM8 expression and Overall Survival and Progression-free Survival in TCGA cohort was determined by using uni-multivariable Cox regression analysis. The effect of TRIM8 on patient glioma cell proliferation was evaluated by performing MTT and clonogenic assays. The mechanisms causing the reduction of TRIM8 expression were explored by using qPCR and in vitro assays. Results: We showed that TRIM8 expression correlates with unfavorable clinical outcome in glioma patients. We found that a restored TRIM8 expression induced a significant reduction of clonogenic potential in U87MG and patient's glioblastoma cells. Finally we provide experimental evidences showing that miR-17 directly targets the 3' UTR of TRIM8 and post-transcriptionally represses the expression of TRIM8. Conclusions: Our study provides evidences that TRIM8 may participate in the carcinogenesis and progression of glioma and that the transcriptional repression of TRIM8 might have potential value for predicting poor prognosis in glioma patients
    corecore