21 research outputs found

    Numerical Characterisation of Jet-Vane based Thrust Vector Control Systems

    Get PDF
    Computational fluid dynamics methodology was used in characterising jet vane based thrust vector control systems of tactical missiles. Three-dimensional Reynolds Averaged Navier-Stokes equations were solved along with two-equation turbulence model for different operating conditions. Nonlinear regression analysis was applied to the detailed CFD database to evolve a mathematical model for the thrust vector control system. The developed model was validated with series of ground based 6-Component static tests. The proven methodology is applied toa new configuration.Defence Science Journal, Vol. 65, No. 4, July 2015, pp. 261-264, DOI: http://dx.doi.org/10.14429/dsj.65.796

    Single Server Interdependent Queueing Model using Baileys Bulk Service rule

    Get PDF
    In this paper, we consider the single server queueing system having Baileys bulk service rule with phase wise. In this model various system characteristics like probability that the system emptiness, variability of the system size and the coefficient of variation are obtained. DOI: 10.17762/ijritcc2321-8169.150520

    Evaluating MODIS-vegetation continuous field products to assess tree cover change and forest fragmentation in India: a multi-scale satellite remote sensing approach

    No full text
    Monitoring the changes in forest-cover and understanding the dynamics of the forest is becoming increasingly important for the sustainable management of forest ecosystems. This paper uses temporal MODIS Vegetation Continuous Field (MODIS-VCF) to monitor the tree cover change in the Indian region over a period of 6 years (2000–2005). Pixel-based linear regression model is developed to identify rate of deforestation and fragmentation at landscape level. The regression parameters viz., slope, offset and variance are used to identify threshold between forest and non-forest classes. The classification algorithm resulted into change area, no change area, positive change and negative changes. MODIS-VCF raw product of 2005 was validated using the field data and showed a coefficient of determination (R2 = 0.85) between percent tree cover and individual plot wise canopy cover information. The results were overlaid with UNEP protected area boundary. On a long-term basis, the forest cover change was monitored using medium spatial resolution (Landsat and IRS) satellite data to identify the rate of deforestation and fragmentation at landscape level. The developed approach is efficient and effective for regional monitoring of forest cover change. It could be automated for regular usage and monitoring

    Quantitative Structure and Composition of Tropical Forests of Mudumalai Wildlife Sanctuary, Western Ghats, India

    No full text
    The present study deals with the assessment of quantitative structure and floristic composition of tropical forests of Mudumalai Wildlife Sanctuary, Western Ghats, India. Forest structure was analyzed across girth classes and height intervals. Altogether 156 tree species were analyzed. Vegetation type-wise Importance Value Index, Shannon-Weiner index, Simpson index, Margalef’s index and Pielou Index were calculated. The tree stand density varies from 112-406.8 ha-1 with the average basal area of 26.25m2/ha-1. Shannon-Weiner Index (H') ranges from 3.94-4.90. The Simpson Index of dominance varies from 0.86-0.94. The Margalef Species Richness Index varies from 4.61-8.31.The population density of tree species across girth class intervals shows that 65.4% and 36.4% of individuals belong to 30-60 cm gbh. Tree distribution by height class intervals shows that around 28.7% of individuals are in the height class of 20-25m, followed by 24.4% in the height of 15-20m, whereas 3.37% of individuals are in the height class of >30m

    Evaluating the accuracy of Climate Hazard Group (CHG) satellite rainfall estimates for precipitation based drought monitoring in Koshi basin, Nepal

    No full text
    Study region: Koshi basin, Nepal. Study focus: While rainfall estimates based on satellite measurements are becoming a very attractive option, they are characterized by non-negligible biases. As such, we assessed the accuracy of two satellite products of the Climate Hazard Group (CHG) – (a) a satellite-only Climate Hazards Group InfraRed Precipitation (CHIRP) product, and (b) a CHIRP blended with ground-based station data (CHIRPS) – at a monthly time scale from 1981 to 2010 in the Koshi basin of Nepal using ground-based measurements. A separate analysis was also made for the data set after 1992, as the number of stations used in the blending has significantly reduced since 1992. Next, both CHG data sets were used to calculate one of the most popularly-used precipitation-based drought indicators – the Standardized Precipitation Index (SPI). New hydrological insights for the study region: The accuracy of the CHG data set was found to be better in low-lying regions, while it was worse in higher-elevation regions. While the CHIRPS data set was better for the whole period, the CHIRP data set was found to be better for the period after 1992. Physiographic region-wise bias correction has improved the accuracy of the CHG products significantly, especially in higher-elevation regions. In terms of SPI values, the two CHG data sets indicated different drought severity when considering the whole period. However, the SPI values, and hence the drought severity were comparable when using the data from after 1992
    corecore