118 research outputs found

    Application of Ultrasonic Technique for Measurement of Instantaneous Burn Rate of Solid Propellants .

    Get PDF
    The ultrasonic pulse-echo technique has been applied for the measurement of instantaneous burnrate of aluminised composite solid propellants. The tests have been carried out on end-burning 30 mmthick propellant specimens at nearly constant pressure of about 1.9 MPa. Necessary software forpost-test data processing and instantaneous burn rate computations have been developed. The burnrates measured by the ultrasonic technique have been compared with those obtained from ballisticevaluation motor tests on propellant from the same mix. An accuracy of about +- 1 per cent ininstantaneous burn rate measurements and reproducibility of results have been demonstrated byapplying ultrasonic technique

    Trace anomaly of the conformal gauge field

    Full text link
    The proposed by Bastianelli and van Nieuwenhuizen new method of calculations of trace anomalies is applied in the conformal gauge field case. The result is then reproduced by the heat equation method. An error in previous calculation is corrected. It is pointed out that the introducing gauge symmetries into a given system by a field-enlarging transformation can result in unexpected quantum effects even for trivial configurations.Comment: 9 pages, LaTeX file, BI-TP 93/3

    Tachyonization of the \LaCDM cosmological model

    Get PDF
    In this work a tachyonization of the Λ\LambdaCDM model for a spatially flat Friedmann-Robertson-Walker space-time is proposed. A tachyon field and a cosmological constant are considered as the sources of the gravitational field. Starting from a stability analysis and from the exact solutions for a standard tachyon field driven by a given potential, the search for a large set of cosmological models which contain the Λ\LambdaCDM model is investigated. By the use of internal transformations two new kinds of tachyon fields are derived from the standard tachyon field, namely, a complementary and a phantom tachyon fields. Numerical solutions for the three kinds of tachyon fields are determined and it is shown that the standard and complementary tachyon fields reproduces the Λ\LambdaCDM model as a limiting case. The standard tachyon field can also describe a transition from an accelerated to a decelerated regime, behaving as an inflaton field at early times and as a matter field at late times. The complementary tachyon field always behaves as a matter field. The phantom tachyon field is characterized by a rapid expansion where its energy density increases with time.Comment: Version accepted for publication in GR

    Cosmic microwave background: polarization and temperature anisotropies from symmetric structures

    Get PDF
    I consider the case of anisotropies in the Cosmic Microwave Background (CMB) from one single ordered perturbation source, or seed, existing well before decoupling between matter and radiation. Such structures could have been left by high energy symmetries breaking in the early universe. I focus on the cases of spherical and cylindrical symmetry of the seed. I give general analytic expressions for the polarization and temperature linear perturbations, factoring out of the Fourier integral the dependence on the photon propagation direction and on the geometric coordinates describing the seed. I show how the CMB perturbations manifestly reflect the symmetries of their seeds. CMB anisotropies are obtained with a line of sight integration. This treatment highlights the undulatory properties of the CMB. I show with numerical examples how the polarization and temperature perturbations propagate beyond the size of their seeds, reaching the CMB sound horizon at the time considered. Just like the waves from a pebble thrown in a pond, CMB anisotropy from a seed intersecting the last scattering surface appears as a series of temperature and polarization waves surrounding the seed, extending on the scale of the CMB sound horizon at decoupling, roughly 1o1^{o} in the sky. Each wave is characterized by its own value of the CMB perturbation, with the same mean amplitude of the signal coming from the seed interior. These waves could allow to distinguish relics from high energy processes of the early universe from point-like astrophysical sources, because of their angular extension and amplitude. Also, the marked analogy between polarization and temperature signals offers cross correlation possibilities for the future Planck Surveyor observations.Comment: 21 pages, seven postscript figures, final version accepted for publication in Phys.Rev.

    Stress effects in structure formation

    Get PDF
    Residual velocity dispersion in cold dark matter induces stresses which lead to effects that are absent in the idealized dust model. A previous Newtonian analysis showed how this approach can provide a theoretical foundation for the phenomenological adhesion model. We develop a relativistic kinetic theory generalization which also incorporates the anisotropic velocity dispersion that will typically be present. In addition to density perturbations, we consider the rotational and shape distortion properties of clustering. These quantities together characterize the linear development of density inhomogeneity, and we find exact solutions for their evolution. As expected, the corrections are small and arise only in the decaying modes, but their effect is interesting. One of the modes for density perturbations decays less rapidly than the standard decaying mode. The new rotational mode generates precession of the axis of rotation. The new shape modes produce additional distortion that remains frozen in during the subsequent (linear) evolution, despite the rapid decay of the terms that caused it.Comment: significantly improved discussion of kinetic theory of CDM velocity dispersion; to appear Phys. Rev.

    Kaluza-Klein Type Robertson Walker Cosmological Model With Dynamical Cosmological Term Λ\Lambda

    Full text link
    In this paper we have analyzed the Kaluza-Klein type Robertson Walker (RW) cosmological models by considering three different forms of variable Λ\Lambda: Λ(a˙a)2\Lambda\sim(\frac{\dot{a}}{a})^2,Λ(a¨a)\Lambda\sim(\frac{\ddot{a}} {a}) and Λρ\Lambda \sim \rho. It is found that, the connecting free parameters of the models with cosmic matter and vacuum energy density parameters are equivalent, in the context of higher dimensional space time. The expression for the look back time, luminosity distance and angular diameter distance are also derived. This work has thus generalized to higher dimensions the well-known results in four dimensional space time. It is found that there may be significant difference in principle at least, from the analogous situation in four dimensional space time.Comment: 16 pages, no figur

    Bianchi Type III Anisotropic Dark Energy Models with Constant Deceleration Parameter

    Full text link
    The Bianchi type III dark energy models with constant deceleration parameter are investigated. The equation of state parameter ω\omega is found to be time dependent and its existing range for this model is consistent with the recent observations of SN Ia data, SN Ia data (with CMBR anisotropy) and galaxy clustering statistics. The physical aspect of the dark energy models are discussed.Comment: 12 pages, 2 figures, Accepted version of IJT

    Chaotic scalar fields as models for dark energy

    Full text link
    We consider stochastically quantized self-interacting scalar fields as suitable models to generate dark energy in the universe. Second quantization effects lead to new and unexpected phenomena is the self interaction strength is strong. The stochastically quantized dynamics can degenerate to a chaotic dynamics conjugated to a Bernoulli shift in fictitious time, and the right amount of vacuum energy density can be generated without fine tuning. It is numerically observed that the scalar field dynamics distinguishes fundamental parameters such as the electroweak and strong coupling constants as corresponding to local minima in the dark energy landscape. Chaotic fields can offer possible solutions to the cosmological coincidence problem, as well as to the problem of uniqueness of vacua.Comment: 30 pages, 3 figures. Replaced by final version accepted by Phys. Rev.

    Reconstructing the Equation of State of Tachyon

    Full text link
    Recent progress in theoretical physics suggests that the dark energy in the universe might be resulted from the rolling tachyon field of string theory. Measurements to SNe Ia can be helpful to reconstruct the equation of state of the rolling tachyon which is a possible candidate of dark energy. We present a numerical analysis for the evolution of the equation of state of the rolling tachyon and derive the reconstruction equations for the equation of state as well as the potential.Comment: 6 pages, 3 figures, to appear Phys. Rev.

    Boundary Term in Metric f(R) Gravity: Field Equations in the Metric Formalism

    Full text link
    The main goal of this paper is to get in a straightforward form the field equations in metric f(R) gravity, using elementary variational principles and adding a boundary term in the action, instead of the usual treatment in an equivalent scalar-tensor approach. We start with a brief review of the Einstein-Hilbert action, together with the Gibbons-York-Hawking boundary term, which is mentioned in some literature, but is generally missing. Next we present in detail the field equations in metric f(R) gravity, including the discussion about boundaries, and we compare with the Gibbons-York-Hawking term in General Relativity. We notice that this boundary term is necessary in order to have a well defined extremal action principle under metric variation.Comment: 12 pages, title changes by referee recommendation. Accepted for publication in General Relativity and Gravitation. Matches with the accepted versio
    corecore