30 research outputs found

    The role and importance of gene polymorphisms in the development of atherosclerosis

    Get PDF
    The development of atherosclerosis is a multifactorial process. The purpose of the study was to examine three genetic polymorphisms playing a role in the metabolic processes underlying the disease. We compared the data of 348 atherosclerotic non-diabetic patients with 260 atherosclerotic diabetic patients and 384 healthy controls. We analyzed the prevalence of myocardial infarction and stroke in three different groups of patients carrying different polymorphisms. It was proved that if the mutant TT eNOS Glu298ASP variant is present, a significantly higher number of myocardial infarctions can be observed than in patients carrying heterozygote GT or normal GG genotype. We proved that in the case of MTHFR 677CT heterozygote variants, the occurrence of myocardial infarction is significantly higher and the difference is also significant in case of the 677TT homozygote variant. It was verified that among patients with the mutant TNF-α AA genotype the occurrence of cardiovascular events was significantly higher. Screening the genetically high risk groups on the long run should be considered as an early detection opportunity that may give better chances for prevention and treatment. Understanding the inflammatory mechanisms of the atherosclerosis may give new therapeutical targets to pharmacologists

    Primary stroke prevention worldwide : translating evidence into action

    Get PDF
    Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis ?erimagi? (Poliklinika Glavi?, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo Ant?nio, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Cz?onkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), Jo?o Sargento-Freitas (Centro Hospitalar e Universit?rio de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gon?alves (Hospital S?o Jos? do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurj?ns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gda?sk, Gda?sk, Poland), Kursad Kutluk (Dokuz Eylul University, ?zmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Micha? Maluchnik (Ministry of Health, Warsaw, Poland), Evija Migl?ne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gda?sk, Gda?sk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis Čerimagić (Poliklinika Glavić, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo António, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Członkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), João Sargento-Freitas (Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gonçalves (Hospital São José do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurjāns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gdańsk, Gdańsk, Poland), Kursad Kutluk (Dokuz Eylul University, İzmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Michał Maluchnik (Ministry of Health, Warsaw, Poland), Evija Miglāne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gdańsk, Gdańsk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: VLF declares that the PreventS web app and Stroke Riskometer app are owned and copyrighted by Auckland University of Technology; has received grants from the Brain Research New Zealand Centre of Research Excellence (16/STH/36), Australian National Health and Medical Research Council (NHMRC; APP1182071), and World Stroke Organization (WSO); is an executive committee member of WSO, honorary medical director of Stroke Central New Zealand, and CEO of New Zealand Stroke Education charitable Trust. AGT declares funding from NHMRC (GNT1042600, GNT1122455, GNT1171966, GNT1143155, and GNT1182017), Stroke Foundation Australia (SG1807), and Heart Foundation Australia (VG102282); and board membership of the Stroke Foundation (Australia). SLG is funded by the National Health Foundation of Australia (Future Leader Fellowship 102061) and NHMRC (GNT1182071, GNT1143155, and GNT1128373). RM is supported by the Implementation Research Network in Stroke Care Quality of the European Cooperation in Science and Technology (project CA18118) and by the IRIS-TEPUS project from the inter-excellence inter-cost programme of the Ministry of Education, Youth and Sports of the Czech Republic (project LTC20051). BN declares receiving fees for data management committee work for SOCRATES and THALES trials for AstraZeneca and fees for data management committee work for NAVIGATE-ESUS trial from Bayer. All other authors declare no competing interests. Publisher Copyright: © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseStroke is the second leading cause of death and the third leading cause of disability worldwide and its burden is increasing rapidly in low-income and middle-income countries, many of which are unable to face the challenges it imposes. In this Health Policy paper on primary stroke prevention, we provide an overview of the current situation regarding primary prevention services, estimate the cost of stroke and stroke prevention, and identify deficiencies in existing guidelines and gaps in primary prevention. We also offer a set of pragmatic solutions for implementation of primary stroke prevention, with an emphasis on the role of governments and population-wide strategies, including task-shifting and sharing and health system re-engineering. Implementation of primary stroke prevention involves patients, health professionals, funders, policy makers, implementation partners, and the entire population along the life course.publishersversionPeer reviewe

    Determinants of antithrombotic choice for patent foramen ovale in cryptogenic stroke.

    No full text
    OBJECTIVE: We examined the influence of clinical, radiologic, and echocardiographic characteristics on antithrombotic choice in patients with cryptogenic stroke (CS) and patent foramen ovale (PFO), hypothesizing that features suggestive of paradoxical embolism might lead to greater use of anticoagulation. METHODS: The Risk of Paradoxical Embolism Study combined 12 databases to create the largest dataset of patients with CS and known PFO status. We used generalized linear mixed models with a random effect of component study to explore whether anticoagulation was preferentially selected based on the following: (1) younger age and absence of vascular risk factors, (2) "high-risk" echocardiographic features, and (3) neuroradiologic findings. RESULTS: A total of 1,132 patients with CS and PFO treated with anticoagulation or antiplatelets were included. Overall, 438 participants (39%) were treated with anticoagulation with a range (by database) of 22% to 54%. Treatment choice was not influenced by age or vascular risk factors. However, neuroradiologic findings (superficial or multiple infarcts) and high-risk echocardiographic features (large shunts, shunt at rest, and septal hypermobility) were predictors of anticoagulation use. CONCLUSION: Both antithrombotic regimens are widely used for secondary stroke prevention in patients with CS and PFO. Radiologic and echocardiographic features were strongly associated with treatment choice, whereas conventional vascular risk factors were not. Prior observational studies are likely to be biased by confounding by indication

    Supplementary Material for: Regional Subclinical Cerebrovascular Disease Is Associated with Balance in an Elderly Multi-Ethnic Population

    No full text
    <b><i>Introduction:</i></b> White matter hyperintensity volume (WMHV) and subclinical brain infarcts (SBI) are associated with impaired mobility, but less is known about the association of WMHV in specific brain regions. We hypothesized that anterior WMHV would be associated with lower scores on the Short Physical Performance Battery (SPPB), a well-validated mobility scale. <b><i>Methods:</i></b> The SPPB was measured a median of 5 years after enrollment into the Northern Manhattan MRI sub study. Volumetric distributions for WMHV in 14 brain regions as a proportion of total cranial volume were determined. Multi-variable linear regression was performed to examine the association of SBI and regional log-WMHV with the SPPB score. <b><i>Results:</i></b> Among 668 participants with SPPB measurements (mean 74 ± 9 years, 37% male and 70% Hispanic), the mean SPPB score was 8.2 ± 2.9. Total (beta = –0.3 per SD, <i>p</i> = 0.001), anterior periventricular (beta = –0.4 per SD, <i>p</i> = 0.001), parietal (beta = –0.2 per SD, <i>p</i> = 0.02) and frontal (beta = –0.3 per SD, <i>p</i> = 0.002) WMHVs were associated with SPPB; other WMHV and SBI were not associated with the SPPB. <b><i>Conclusions:</i></b> WMHV, especially in the anterior ­cerebral regions, is associated with a lower SPPB. Prevention of subclinical cerebrovascular disease is a potential target to prevent physical decline in the elderly

    Recurrent stroke predictors differ in medically treated patients with pathogenic vs. other PFOs.

    Get PDF
    OBJECTIVE: To examine predictors of stroke recurrence in patients with a high vs a low likelihood of having an incidental patent foramen ovale (PFO) as defined by the Risk of Paradoxical Embolism (RoPE) score. METHODS: Patients in the RoPE database with cryptogenic stroke (CS) and PFO were classified as having a probable PFO-related stroke (RoPE score of &gt;6, n = 647) and others (RoPE score of ≤6 points, n = 677). We tested 15 clinical, 5 radiologic, and 3 echocardiographic variables for associations with stroke recurrence using Cox survival models with component database as a stratification factor. An interaction with RoPE score was checked for the variables that were significant. RESULTS: Follow-up was available for 92%, 79%, and 57% at 1, 2, and 3 years. Overall, a higher recurrence risk was associated with an index TIA. For all other predictors, effects were significantly different in the 2 RoPE score categories. For the low RoPE score group, but not the high RoPE score group, older age and antiplatelet (vs warfarin) treatment predicted recurrence. Conversely, echocardiographic features (septal hypermobility and a small shunt) and a prior (clinical) stroke/TIA were significant predictors in the high but not low RoPE score group. CONCLUSION: Predictors of recurrence differ when PFO relatedness is classified by the RoPE score, suggesting that patients with CS and PFO form a heterogeneous group with different stroke mechanisms. Echocardiographic features were only associated with recurrence in the high RoPE score group

    An index to identify stroke-related vs incidental patent foramen ovale in cryptogenic stroke.

    No full text
    OBJECTIVE: We aimed to create an index to stratify cryptogenic stroke (CS) patients with patent foramen ovale (PFO) by their likelihood that the stroke was related to their PFO. METHODS: Using data from 12 component studies, we used generalized linear mixed models to predict the presence of PFO among patients with CS, and derive a simple index to stratify patients with CS. We estimated the stratum-specific PFO-attributable fraction and stratum-specific stroke/TIA recurrence rates. RESULTS: Variables associated with a PFO in CS patients included younger age, the presence of a cortical stroke on neuroimaging, and the absence of these factors: diabetes, hypertension, smoking, and prior stroke or TIA. The 10-point Risk of Paradoxical Embolism score is calculated from these variables so that the youngest patients with superficial strokes and without vascular risk factors have the highest score. PFO prevalence increased from 23% (95% confidence interval [CI]: 19%-26%) in those with 0 to 3 points to 73% (95% CI: 66%-79%) in those with 9 or 10 points, corresponding to attributable fraction estimates of approximately 0% to 90%. Kaplan-Meier estimated stroke/TIA 2-year recurrence rates decreased from 20% (95% CI: 12%-28%) in the lowest Risk of Paradoxical Embolism score stratum to 2% (95% CI: 0%-4%) in the highest. CONCLUSION: Clinical characteristics identify CS patients who vary markedly in PFO prevalence, reflecting clinically important variation in the probability that a discovered PFO is likely to be stroke-related vs incidental. Patients in strata more likely to have stroke-related PFOs have lower recurrence risk

    The Risk of Paradoxical Embolism (RoPE) Study: initial description of the completed database.

    No full text
    BACKGROUND: Detecting a benefit from closure of patent foramen ovale in patients with cryptogenic stroke is hampered by low rates of stroke recurrence and uncertainty about the causal role of patent foramen ovale in the index event. A method to predict patent foramen ovale-attributable recurrence risk is needed. However, individual databases generally have too few stroke recurrences to support risk modeling. Prior studies of this population have been limited by low statistical power for examining factors related to recurrence. AIMS: The aim of this study was to develop a database to support modeling of patent foramen ovale-attributable recurrence risk by combining extant data sets. METHODS: We identified investigators with extant databases including subjects with cryptogenic stroke investigated for patent foramen ovale, determined the availability and characteristics of data in each database, collaboratively specified the variables to be included in the Risk of Paradoxical Embolism database, harmonized the variables across databases, and collected new primary data when necessary and feasible. RESULTS: The Risk of Paradoxical Embolism database has individual clinical, radiologic, and echocardiographic data from 12 component databases, including subjects with cryptogenic stroke both with (n = 1925) and without (n = 1749) patent foramen ovale. In the patent foramen ovale subjects, a total of 381 outcomes (stroke, transient ischemic attack, death) occurred (median follow-up 2·2 years). While there were substantial variations in data collection between studies, there was sufficient overlap to define a common set of variables suitable for risk modeling. CONCLUSION: While individual studies are inadequate for modeling patent foramen ovale-attributable recurrence risk, collaboration between investigators has yielded a database with sufficient power to identify those patients at highest risk for a patent foramen ovale-related stroke recurrence who may have the greatest potential benefit from patent foramen ovale closure
    corecore