3 research outputs found

    IL-13 but not IL-4 signaling via IL-4Rα protects mice from papilloma formation during DMBA/TPA two-step skin carcinogenesis

    Get PDF
    Interleukin 4 (IL-4) was shown to be tumor-promoting in full carcinogenesis studies using 3-methylcholanthrene (MCA). Because heretofore the role of IL-4 in DMBA/TPA (9,10-dimethyl-1,2-benz-anthracene/12-O-tetradecanoylphorbol-13-acetate) two-stage carcinogenesis was not studied, we performed such experiments using either IL-4(-/-) or IL-4R{alpha}(-/-) mice. We found that IL-4R{alpha}(-/-) but not IL-4(-/-) mice have enhanced papilloma formation, suggesting that IL-13 may be involved. Indeed, IL-13(-/-) mice developed more papillomas after exposure to DMBA/TPA than their heterozygous IL-13-competent littermate controls. However, when tested in a full carcinogenesis experiment, exposure of mice to 25 {My}g of MCA, both IL-13(-/-) and IL-13(+/-) mice led to the same incidence of tumors. While IL-4 enhances MCA carcinogenesis, it does not play a measurable role in our DMBA/TPA carcinogenesis experiments. Conversely, IL-13 does not affect MCA carcinogenesis but protects mice from DMBA/TPA carcinogenesis. One possible explanation is that IL-4 and IL-13, although they share a common IL-4R{alpha} chain, regulate signaling in target cells differently by employing distinct JAK/STAT-mediated signaling pathways downstream of IL-13 or IL-4 receptor complexes, resulting in different inflammatory transcriptional programs. Taken together, our results indicate that the course of DMBA/TPA- and MCA-induced carcinogenesis is affected differently by IL-4 versus IL-13-mediated inflammatory cascades

    Macrophages acquire a TNF-dependent inflammatory memory in allergic asthma.

    No full text
    BACKGROUND: Infectious agents can reprogram or "train" macrophages and their progenitors to respond more readily to subsequent insults. However, whether such an inflammatory memory exists in type-2 inflammatory conditions such as allergic asthma was not known. OBJECTIVE: To decipher macrophage trained immunity in allergic asthma. METHODS: We used a combination of clinical sampling of house dust mite (HDM)-allergic patients, HDM-induced allergic airway inflammation (AAI) in mice and an in vitro training set-up to analyze persistent changes in macrophage eicosanoid-, cytokine- and chemokine production as well as underlying metabolic and epigenetic mechanisms. Transcriptional and metabolic profiles of patient-derived and in vitro trained macrophages were assessed by RNA sequencing or Seahorse and LC-MS/MS analysis, respectively. RESULTS: We found that macrophages differentiated from bone marrow- or blood monocyte- progenitors of HDM-allergic mice or asthma patients show inflammatory transcriptional reprogramming and excessive mediator (TNF-α, CCL17, leukotriene, PGE2, IL-6) responses upon stimulation. Macrophages from HDM-allergic mice initially exhibited a type-2 imprint, which shifted towards a classical inflammatory training over time. HDM-induced AAI elicited a metabolically activated macrophage phenotype, producing high amounts of 2-hydroxyglutarate (2-HG). HDM-induced macrophage training in vitro was mediated by a formyl-peptide receptor 2 (FPR2)-TNF-2-HG-PGE2/EP2-axis, resulting in an M2-like macrophage phenotype with high CCL17 production. TNF blockade by etanercept or genetic ablation of Tnf in myeloid cells prevented the inflammatory imprinting of bone marrow-derived macrophages from HDM-allergic mice. CONCLUSION: Allergen-triggered inflammation drives a TNF-dependent innate memory, which may perpetuate and exacerbate chronic type-2 airway inflammation and thus represents a target for asthma therapy
    corecore