2 research outputs found

    Low salt intake modulates insulin signaling, JNK activity and IRS-1(ser307) phosphorylation in rat tissues

    No full text
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOA severe restriction of sodium chloride intake has been associated with insulin resistance and obesity. The molecular mechanisms by which the low salt diet (LS) can induce insulin resistance have not yet been established. The c-jun N-terminal kinase (JNK) activity has been involved in the pathophysiology of obesity and induces insulin resistance by increasing inhibitory IRS-1(ser307) phosphorylation. In this study we have evaluated the regulation of insulin signaling, JNK activation and IRS-1(ser307) 7 phophorylation in liver, muscle and adipose tissue by immunoprecipitation and immunoblotting in rats fed with LS or normal salt diet (NS) during 9 weeks. LS increased body weight, visceral adiposity, blood glucose and plasma insulin levels, induced insulin resistance and did not change blood pressure. In LS rats a decrease in PI3-K/Akt was observed in liver and muscle and an increase in this pathway was seen in adipose tissue. JNK activity and IRS-1(ser307) phosphorylation were higher in insulin-resistant tissues. In summary, the insulin resistance, induced by LS, is tissue-specific and is accompanied by activation of JNK and IRS-1(ser307) phosphorylation. The impairment of the insulin signaling in these tissues, but not in adipose tissue, may lead to increased adiposity and insulin resistance in LS rats1853429437FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOsem informaçã
    corecore