52 research outputs found

    Evidence of no k-selection in gain spectra of quantum-well AlGaAs laser diodes

    No full text
    It is suggested, contrary to present views, that the processes giving rise to radiation in undoped or lightly doped quantum well laser diodes are not subject to a k-selection rule. The reason is contained in the good fit of experimental TE gain spectra which we obtain on the basis of this assumption. This does not rule out the possibility that spectra can in principle be obtained in the future which are subject to the k-selection rule

    New Critical Behavior in Einstein-Yang-Mills Collapse

    Get PDF
    We extend the investigation of the gravitational collapse of a spherically symmetric Yang-Mills field in Einstein gravity and show that, within the black hole regime, a new kind of critical behavior arises which separates black holes formed via Type I collapse from black holes formed through Type II collapse. Further, we provide evidence that these new attracting critical solutions are in fact the previously discovered colored black holes with a single unstable mode.Comment: 13 pages, 4 figure

    Compressibility of a two-dimensional hole gas in tilted magnetic field

    Full text link
    We have measured compressibility of a two-dimensional hole gas in p-GaAs/AlGaAs heterostructure, grown on a (100) surface, in the presence of a tilted magnetic field. It turns out that the parallel component of magnetic field affects neither the spin splitting nor the density of states. We conclude that: (a) g-factor in the parallel magnetic field is nearly zero in this system; and (b) the level of the disorder potential is not sensitive to the parallel component of the magnetic field

    Metal-insulator transition in disordered 2DEG including temperature effects

    Full text link
    We calculate self-consistently the mutual dependence of electron correlations and electron-defect scattering for a two dimensional electron gas at finite temperature. We employ an STLS approach to calculate the electron correlations while the electron scattering rate off Coulombic impurities and surface roughness is calculated using self-consistent current-relaxation theory. The methods are combined and self-consistently solved. We discuss a metal-insulator transition for a range of disorder levels and electron densities. Our results are in good agreement with recent experimental observations.Comment: 4 pages, RevTeX + epsf, 5 figure

    Propagation inhibition and wave localization in a 2D random liquid medium

    Full text link
    Acoustic propagation and scattering in water containing many parallel air-filled cylinders is studied. Two situations are considered and compared: (1) wave propagating through the array of cylinders, imitating a traditional experimental setup, and (2) wave transmitted from a source located inside the ensemble. We show that waves can be blocked from propagation by disorders in the first scenario, but the inhibition does not necessarily imply wave localization. Furthermore, the results reveal the phenomenon of wave localization in a range of frequencies.Comment: Typos in Fiures are correcte

    Symmetric Hyperbolic System in the Self-dual Teleparallel Gravity

    Full text link
    In order to discuss the well-posed initial value formulation of the teleparallel gravity and apply it to numerical relativity a symmetric hyperbolic system in the self-dual teleparallel gravity which is equivalent to the Ashtekar formulation is posed. This system is different from the ones in other works by that the reality condition of the spatial metric is included in the symmetric hyperbolicity and then is no longer an independent condition. In addition the constraint equations of this system are rather simpler than the ones in other works.Comment: 8 pages, no figure

    Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations

    Get PDF
    We present a new many-parameter family of hyperbolic representations of Einstein's equations, which we obtain by a straightforward generalization of previously known systems. We solve the resulting evolution equations numerically for a Schwarzschild black hole in three spatial dimensions, and find that the stability of the simulation is strongly dependent on the form of the equations (i.e. the choice of parameters of the hyperbolic system), independent of the numerics. For an appropriate range of parameters we can evolve a single 3D black hole to t≃600Mt \simeq 600 M -- 1300M1300 M, and are apparently limited by constraint-violating solutions of the evolution equations. We expect that our method should result in comparable times for evolutions of a binary black hole system.Comment: 11 pages, 2 figures, submitted to PR

    Energy Norms and the Stability of the Einstein Evolution Equations

    Get PDF
    The Einstein evolution equations may be written in a variety of equivalent analytical forms, but numerical solutions of these different formulations display a wide range of growth rates for constraint violations. For symmetric hyperbolic formulations of the equations, an exact expression for the growth rate is derived using an energy norm. This expression agrees with the growth rate determined by numerical solution of the equations. An approximate method for estimating the growth rate is also derived. This estimate can be evaluated algebraically from the initial data, and is shown to exhibit qualitatively the same dependence as the numerically-determined rate on the parameters that specify the formulation of the equations. This simple rate estimate therefore provides a useful tool for finding the most well-behaved forms of the evolution equations.Comment: Corrected typos; to appear in Physical Review
    • 

    corecore