2,055 research outputs found
Forest health from different perspectives
Forest health is an increasingly important concept in natural resource management. However, definition of forest health is difficult and dependent on human perspective. From a utilitarian perspective, forest health has been defined by the production of forest conditions which directly satisfy human needs. From an ecosystem-centered perspective, forest health has been defined by resilience, recurrence, persistence and biophysical processes which lead to sustainable ecological conditions. Definitions and understanding of forest health are also dependent on spatial scale, with increasing ambiguity associated with increasing land area and numbers of trees
Scale invariance in coarsening of binary and ternary fluids
Phase separation in binary and ternary fluids is studied using a two
dimensional Lattice Gas Automata. The lengths, given by the the first zero
crossing point of the correlation function and the total interface length is
shown to exhibit power law dependence on time. In binary mixtures, our data
clearly indicate the existence of a regime having more than one length scale
where the coarsening process proceeds through the rupture and reassociation of
domains. In ternary fluids; in the case of symmetric mixtures there exists a
regime with a single length scale having dynamic exponent 1/2, while in
asymmetric mixtures our data establish the break down of scale invariance.Comment: 20 pages, 13 figure
Screening polymeric ionic liquids for chromatography-based purification of bacteriophage M13
M13 bacteriophage is a key instrument in phage display applications, as well as a possible antibacterial therapeutic agent due to its highly restrictive bacterial pathogenesis, and other applications. The traditional phage purification process is usually achieved by gradient ultracentrifugation or a combination of precipitation, centrifugation and microfiltration. These approaches easily lead to long process times, high operational costs, phage aggregation and consequent product loss (approximately 60%). This work is thus focused on an alternative potential large-scale process to achieve high yield and purity while minimizing the operational costs.
Electrostatic-based separation processes are also common biomolecules purification techniques. Although anion exchange chromatography has been used before to purify several viral particles, this technique has been poorly reported for the purification of M13 phage. In a recent work, our group has demonstrated the use of a predominant anion exchange process, where a polymeric ionic liquid (PIL) was used as an alternative separation matrix for M13 bacteriophage. In this work, a variety of system parameters was studied, including chemical structure of the cation and the anion, the crosslinker nature and its concentration, either in batch adsorption/elution or chromatographic operation mode. The PIL-based chromatographic operation mode revealed to be a suitable separation process for M13 from directly filtered E. coli supernatant, reaching over 70% M13 recovery and 4.6 purification factor in a single step. To our knowledge, this is the first time that PILs have been reported as separation agents for bioproducts from complex mixtures.publishe
Direct Minimization Generating Electronic States with Proper Occupation Numbers
We carry out the direct minimization of the energy functional proposed by
Mauri, Galli and Car to derive the correct self-consistent ground state with
fractional occupation numbers for a system degenerating at the Fermi level. As
a consequence, this approach enables us to determine the electronic structure
of metallic systems to a high degree of accuracy without the aid of level
broadening of the Fermi-distribution function. The efficiency of the method is
illustrated by calculating the ground-state energy of C and Si
molecules and the W(110) surface to which a tungsten adatom is adsorbed.Comment: 4 pages, 4 figure
Three-dimensional lattice-Boltzmann simulations of critical spinodal decomposition in binary immiscible fluids
We use a modified Shan-Chen, noiseless lattice-BGK model for binary
immiscible, incompressible, athermal fluids in three dimensions to simulate the
coarsening of domains following a deep quench below the spinodal point from a
symmetric and homogeneous mixture into a two-phase configuration. We find the
average domain size growing with time as , where increases
in the range , consistent with a crossover between
diffusive and hydrodynamic viscous, , behaviour. We find
good collapse onto a single scaling function, yet the domain growth exponents
differ from others' works' for similar values of the unique characteristic
length and time that can be constructed out of the fluid's parameters. This
rebuts claims of universality for the dynamical scaling hypothesis. At early
times, we also find a crossover from to in the scaled structure
function, which disappears when the dynamical scaling reasonably improves at
later times. This excludes noise as the cause for a behaviour, as
proposed by others. We also observe exponential temporal growth of the
structure function during the initial stages of the dynamics and for
wavenumbers less than a threshold value.Comment: 45 pages, 18 figures. Accepted for publication in Physical Review
Phase separating binary fluids under oscillatory shear
We apply lattice Boltzmann methods to study the segregation of binary fluid
mixtures under oscillatory shear flow in two dimensions. The algorithm allows
to simulate systems whose dynamics is described by the Navier-Stokes and the
convection-diffusion equations. The interplay between several time scales
produces a rich and complex phenomenology. We investigate the effects of
different oscillation frequencies and viscosities on the morphology of the
phase separating domains. We find that at high frequencies the evolution is
almost isotropic with growth exponents 2/3 and 1/3 in the inertial (low
viscosity) and diffusive (high viscosity) regimes, respectively. When the
period of the applied shear flow becomes of the same order of the relaxation
time of the shear velocity profile, anisotropic effects are clearly
observable. In correspondence with non-linear patterns for the velocity
profiles, we find configurations where lamellar order close to the walls
coexists with isotropic domains in the middle of the system. For particular
values of frequency and viscosity it can also happen that the convective
effects induced by the oscillations cause an interruption or a slowing of the
segregation process, as found in some experiments. Finally, at very low
frequencies, the morphology of domains is characterized by lamellar order
everywhere in the system resembling what happens in the case with steady shear.Comment: 1 table and 12 figures in .gif forma
Carrier relaxation, pseudogap, and superconducting gap in high-Tc cuprates: A Raman scattering study
We describe results of electronic Raman-scattering experiments in differently
doped single crystals of Y-123 and Bi-2212. The comparison of AF insulating and
metallic samples suggests that at least the low-energy part of the spectra
originates predominantly from excitations of free carriers. We therefore
propose an analysis of the data in terms of a memory function approach.
Dynamical scattering rates and mass-enhancement factors for the carriers are
obtained. In B2g symmetry the Raman data compare well to the results obtained
from ordinary and optical transport. For underdoped materials the dc scattering
rates in B1g symmetry become temperature independent and considerably larger
than in B2g symmetry. This increasing anisotropy is accompanied by a loss of
spectral weight in B2g symmetry in the range between the superconducting
transition at Tc and a characteristic temperature T* of order room temperature
which compares well with the pseudogap temperature found in other experiments.
The energy range affected by the pseudogap is doping and temperature
independent. The integrated spectral loss is approximately 25% in underdoped
samples and becomes much weaker towards higher carrier concentration. In
underdoped samples, superconductivity related features in the spectra can be
observed only in B2g symmetry. The peak frequencies scale with Tc. We do not
find a direct relation between the pseudogap and the superconducting gap.Comment: RevTeX, 21 pages, 24 gif figures. For PostScript with embedded eps
figures, see http://www.wmi.badw-muenchen.de/~opel/k2.htm
- …