44 research outputs found

    Simulation of Mechanical Deformation and Tribology of Nano-Thin Amorphous Hydrogenated Carbon (a:Ch) Films Using Molecular Dynamics

    Get PDF
    Molecular dynamics computer simulations are used to study the effect of substrate temperature on microstructure of deposited amorphous hydrogenated carbon (a:CH) films. A transition from dense diamond- like films to porous graphite-like films is observed between substrate temperatures of 400 and 600 K for a deposition energy of 20 eV. The dense a:CH film grown at 300 K and 20 eV has a hardness ({similar_to}50 GPa) about half that of a pure carbon (a:C) film grown under the same conditions

    Molecular Dynamics Simulation of Mechanical Deformation of Ultra-Thin Amorphous Carbon Films

    Get PDF
    Amorphous carbon films approximately 20nm thick are used throughout the computer industry as protective coatings on magnetic storage disks. The structure and function of this family of materials at the atomic level is poorly understood. Recently. we simulated the growth of a:C and a:CH films 1 to 5 nm thick using Brenner`s bond-order potential model with added torsional energy terms. The microstructure shows a propensity towards graphitic structures at low deposition energy (20eV). In this paper we present simulations of the evolution of this microstructure for the dense 20eV films during a simulated indentation by a hard diamond tip. We also simulate sliding, the tip across the surface to study dynamical processes like friction, energy transport and microstructure evolution during sliding

    Spontaneous emission between an unusual pair of plates

    Full text link
    We compute the modification in the spontaneous emission rate for a two-level atom when it is located between two parallel plates of different nature: a perfectly conducting plate (ϵ)(\epsilon\to \infty) and an infinitely permeable one (μ)(\mu\to \infty). We also discuss the case of two infinitely permeable plates. We compare our results with those found in the literature for the case of two perfectly conducting plates.Comment: latex file 4 pages, 4 figure

    THEORY OF SURFACE ENHANCED RAMAN SCATTERING : A PROSPECTIVE VIEW

    No full text
    La compréhension théorique des origines des forts signaux Raman de molécules proches de surfaces d'Ag, de Cu et d'Au rendues rugueuses, a progressé de telle façon qu'on reconnaît l'action de deux types de processus très différents. Il existe un renforcement "chimique", qui est apparent seulement pour les espèces chimisorbées, comme par exemple des anions adsorbés de façon spécifique sur des électrodes d'Ag. Le mécanisme chimique est mal compris, cependant on a avancé des idées et des concepts ingénieux, incluant la localisation d'états de paires électron-trou et le transfert de charge, commandé optiquement, entre l'adsorbat et le métal, pour modéliser des aspects du renforcement chimique. Le second processus qui est mieux compris, est le renforcement énorme à la surface des champs du rayonnement entrant et sortant, qui résulte de géométries en forme de paratonnerre et de l'excitation de modes de plasmon de surface localisés. Les calculs montrent que, pour des géométries particulières, des facteurs de renforcement très élevés (approximativement 106-108) sont possibles dans des régions confinées.Theoretical understanding of the origins of strong Raman signals from molecules near roughened Ag, Cu, and Au surfaces has progressed to the point where the action of two very different types of process are recognized. There is "chemical" enhancement that is apparent only for chemisorbed species, as for example, specifically adsorbed anions on Ag electrodes. The chemical mechanism is poorly understood, however, ingenious ideas and concepts have been advanced, including localization of electron-hole pair states and optically driven charge transfer between adsorbate and metal, to model aspects of the chemical enhancement. The second and best understood process is the enormous enhancement of the incoming and outgoing radiation fields at the surface resulting from lightening rod geometries and the excitation of localized surface plasmon modes. Calculations show that for special geometries, very high (approximately 106-108) enhancement factors are possible in confined regions

    Atomistic modeling and simulation

    No full text
    Electrochemical Society Interface9430-32ELSI

    Ab initio molecular dynamics simulation of LiBr association in water

    No full text
    10.1063/1.1311965Journal of Chemical Physics1132310676-10684JCPS

    The electronic structure of the dizincocene core

    No full text
    10.1016/j.chemphys.2006.04.021Chemical Physics3272-3283-290CMPH

    Electronic structure of bulk and (0 0 1) surface layers of pyrite FeS 2

    No full text
    10.1016/j.commatsci.2004.02.026Computational Materials Science303-4 SPEC. ISS.358-363CMMS
    corecore