125 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Evolution of dislocation structure in neutron irradiated Zircaloy-2 studied by synchrotron x-ray diffraction peak profile analysis

    No full text
    Dislocation structures in neutron irradiated Zircaloy-2 fuel cladding and channel material have been characterized by means of high-resolution synchrotron x-ray diffraction combined with whole peak profile analysis and by transmission electron microscopy (TEM). The samples available for this characterization were taken from high burnup fuel assemblies and offer insight into the evolution of the dislocation structure after the formation of dislocation loops containing a c component. Absolute dislocation density values are about 4–15 times higher for the whole peak profile compared to TEM analysis. Most interestingly, the diffraction analysis suggests that the total dislocation density, as well as the a loop density, increases with fluence for the cladding material type. This trend is also inferred from a Williamson-Hall representation but contradicts the TEM observations. The c loop density evolution is more complicated and doesn't display any particular trend. In addition, the diffraction analysis highlights the presence of well-developed shoulders adjacent to the basal reflections and noticeable peak asymmetry particularly for the channel samples that experienced slightly lower operation temperatures than the clad. The findings are discussed in respect of the perceived irradiation induced growth mechanisms in Zr alloys.<br/
    corecore