20 research outputs found

    An Appraisal Of The Chemical And Thermal Stability Of Silica Based Reversed-phase Liquid Chromatographic Stationary Phases Employed Within The Pharmaceutical Environment

    No full text
    Mobile phase pH and temperature are major factors in determining retention, selectivity and chromatographic performance of ionizable compounds. This imposes a requirement that stationary phases must ideally be stable in both acidic and basic conditions coupled with good thermal stability, in order to be able to chromatograph these compounds in either their ionized or ion-suppressed modes. The development of a range of new high and/or low pH stable silica based RPLC stationary phases (including sub-2 ÎŒm fully porous and sub-3 ÎŒm fused core-shell materials), which are specially designed for the analysis of ionizable compounds and their chemical and thermal stability is reviewed. The ability to utilize both pH and temperature as selectivity variables allows the chromatographer to exploit a much wider method development design space including previously prohibited alkaline conditions. This greatly increases the probability of satisfying the desired chromatographic selectivity and performance criteria. © 2013 Elsevier B.V.77100115McCalley, D.V., The challenges of the analysis of basic compounds by high performance liquid chromatography: some possible approaches for improved separations (2010) J. Chromatogr. A, 1217, pp. 858-880Dolan, J.W., Pedersen, K., A picture is worth a thousand words (2011) LC-GC N. Am., 29, pp. 136-142Dolan, J.W., The perfect method. Part V. Changing column selectivity (2007) LC-GC N. Am., 25, pp. 1014-1020Dolan, J.W., Selectivity in reversed-phase LC separations. Part I. Solvent-type selectivity (2010) LC-GC N. Am., 28, pp. 1022-1027Dolan, J.W., The perfect method. V. Changing column selectivity (2011) LC-GC N. Am., 25, pp. 1014-1020Neue, U.D., Kussb, H.-J., Improved reversed-phase gradient retention modelling (2010) J. Chromatogr. A, 1217, pp. 3794-3803Nikitas, P., Pappa-Louisi, A., Agrafiotou, P., Mansour, A., Multilinear gradient elution optimization in reversed-phase liquid chromatography based on logarithmic retention models: application to separation of a set of purines, pyrimidines and nucleosides (2011) J. Chromatogr. A, 1218, pp. 5658-5663GarcĂ­a-ĂĄlvarez-Coque, M.C., Torres-LapasiĂł, J.R., Baeza-Baeza, J.J., Models and objective functions for the optimisation of selectivity in reversed-phase liquid chromatography (2006) Anal. Chim. Acta, 579, pp. 125-145Neue, U.D., MĂ©ndez, A., Selectivity in reversed-phase separations: general influence of solvent type and mobile phase pH (2007) J. Sep. Sci., 30, pp. 949-963Monks, K., MolnĂĄr, I., Rieger, H.-J., BogĂĄti, B., SzabĂł, E., Quality by design: multidimensional exploration of the design space in high performance liquid chromatography method development for better robustness before validation (2012) J. Chromatogr. A, 1232, pp. 218-230Engelhardt, H., Blay, C., Saar, J., Reversed phase chromatography-the mystery of surface silanols (2005) Chromatographia, (SUPPL. 62), pp. S19-S29Wiese, S., Teutenberg, T., Schmidt, T.C., General strategy for performing temperature programming in high performance liquid chromatography: prediction of linear temperature gradients (2011) Anal. Chem., 83, pp. 2227-2233Wiese, S., Teutenberg, T., Schmidt, T.C., A general strategy for performing temperature-programming in high performance liquid chromatography-prediction of segmented temperature gradients (2011) J. Chromatogr. A, 1218, pp. 6898-6906Heinisch, S., Rocca, J.-L., Sense and nonsense of high-temperature liquid chromatography (2009) J. Chromatogr. A, 1216, pp. 642-658Teutenberg, T., Potential of high temperature liquid chromatography for the improvement of separation efficiency-a review (2009) Anal. Chim. Acta, 643, pp. 1-12Vanhoenacker, G., Sandra, P., High temperature and temperature programmed HPLC: possibilities and limitations (2007) Anal. Bioanal. Chem., 390, pp. 245-248Vanhoenacker, G., Sandra, P., Elevated temperature and temperature programming in conventional liquid chromatography-fundamentals and applications (2006) J. Sep. Sci., 29, pp. 1822-1835Borges, E.M., Collins, C.H., Selectivity of some basic solutes on a poly(methyltetradecylsiloxane)-silica stationary phase (2011) J. Sep. Sci., 34, pp. 3011-3019Guillarme, D., Ruta, J., Rudaz, S., Veuthey, J.-L., New trends in fast and high-resolution liquid chromatography: a critical comparison of existing approaches (2010) Anal. Bioanal. Chem., 397, pp. 1069-1082GarcĂ­a-Lavandeira, J., Oliveri, P., MartĂ­nez-Pontevedra, J.A., BollaĂ­n, M.H., Forina, M., Cela, R., Computer-assisted modelling and optimisation of reversed-phase high-temperature liquid chromatographic (RP-HTLC) separations (2011) Anal. Bioanal. Chem., 399, pp. 1951-1964Wiese, S., Teutenberg, T., Schmidt, T.C., A general strategy for performing temperature-programming in high performance liquid chromatography-further improvements in the accuracy of retention time predictions of segmented temperature gradients (2012) J. Chromatogr. A, 1222, pp. 71-80Claessens, H.A., van Straten, M.A., Review on the chemical and thermal stability of stationary phases for reversed-phase liquid chromatography (2004) J. Chromatogr. A, 1060, pp. 23-41Claessens, H.A., Trends and progress in the characterization of stationary phases for reversed-phase liquid chromatography (2001) Trends Anal. Chem., 20, pp. 563-583Kirkland, J.J., Adams, J.B., van Straten, M.A., Claessens, H.A., Bidentate silane stationary phases for reversed-phase high-performance liquid chromatography (1998) Anal. Chem., 70, pp. 4344-4352Kirkland, J.J., Glajch, J.L., Farlee, R.D., Synthesis and characterization of highly stable bonded phases for high-performance liquid chromatography column packings (1989) Anal. Chem., 61, pp. 2-11Silva, C.R., Collins, C.H., Enhanced stability stationary phases for HPLC (2008) LC-GC N. Am., 26, pp. 47-52Majors, R.R., New chromatography columns and accessories at the 2003 Pittsburgh Conference. Part I (2003) LC-GC Europe, 16, pp. 202-219Majors, R.R., New chromatography columns and accessories at Pittcon 2012. Part I (2012) LC-GC N. Am., 30, pp. 1-7Majors, R.R., New chromatography columns and accessories at Pittcon 2007. Part I (2007) LC-GC N. Am., 25 (3), pp. 248-266Yang, X., Dai, J., Carr, P.W., A nalysis and critical comparison of the reversed-phase and ion-exchange contributions to retention on polybutadiene coated zirconia and octadecyl silane bonded silica phases (2003) J. Chromatogr. A, 996, pp. 13-31Neue, U.D., Tran, K.V., MĂ©ndez, A., Carr, P.W., The combined effect of silanols and the reversed-phase ligand on the retention of positively charged compounds (2005) J. Chromatogr. A, 1063, pp. 35-45Fountain, K.J., Hewitson, H.B., Iraneta, P.C., Morrison, D., Practical applications of charged surface hybrid (CSH) technology (2010) LC-GC N. Am., 28, pp. 13-18Nawrocki, J., The silanol group and its role in liquid chromatography (1997) J. Chromatogr. A, 779, pp. 29-71Bair, M.D., Dorsey, J.G., Effect of trimethylsilane pre-capping on monomeric C18 stationary phases made from high-purity type-B silica substrates: efficiency, retention, and stability (2012) J. Chromatogr. A, 1220, pp. 35-43Nawrocki, J., Silica surface-controversies, strong adsorption sites, their blockage and removal. Part I (1991) Chromatographia, 31, pp. 177-192Nawrocki, J., Silica surface-controversies, strong adsorption sites, their blockage and removal. Part II (1991) Chromatographia, 31, pp. 193-205Bukenmaier, S.M.C., McCalley, D.V., Euerby, M.R., Overloading study of bases using RP-HPLC columns as an aid to rationalization of overloading on silica-ODS phases (2002) Anal. Chem., 74, pp. 4672-4681Cheng, Y.-F., Walter, T.H., Lu, Z., Iraneta, P., Alden, B.A., Gendreau, C., Neue, U.D., Fisk, R., Hybrid organic-inorganic particle technology: breaking through traditional barriers of HPLC separations (2000) LC-GC N. Am., 18, pp. 1162-1172Walter, T., Characterization of novel reversed-phase HPLC packings based on hybrid organic/inorganic particles (2000), Paper 795, Pittcon 2000, New Orleans, Louisiana, 12-17 MarchKirkland, J.J., Development of some stationary phases for reversed-phase high-performance liquid chromatography (2004) J. Chromatogr. A, 1060, pp. 9-21Neue, U.D., Walter, T.H., Alden, B.A., Jiang, Z., Fisk, R.P., Cook, J.T., Glose, K.H., Crowley, R.J., Use of high-performance LC packings from pH 1 to pH 12 (1999) Am. Lab., 31, pp. 36-39Wyndham, K.D., O'Gara, J.E., Walter, T.H., Glose, K.H., Lawrence, N.L., Alden, B.A., Izzo, G.S., Iraneta, P.C., Characterization and evaluation of C18 HPLC stationary phases based on ethyl-bridged hybrid organic/inorganic particles (2003) Anal. Chem., 75, pp. 6781-6788Peng, L., Farkas, T., Analysis of basic compounds by reversed-phase liquid chromatography-electrospray mass spectrometry in high-pH mobile phases (2008) J. Chromatogr. A, 1179, pp. 131-144Haun, J., Oeste, K., Teutenberg, T., Schmidt, T.C., Long-term high-temperature and pH stability assessment of modern commercially available stationary phases by using retention factor analysis (2012) J. Chromatogr. A, 1263, pp. 99-107Zhang, L., Kujawinski, D.M., Jochmann, M.A., Schmidt, T.C., High-temperature reversed-phase liquid chromatography coupled to isotope ratio mass spectrometry (2011) Rapid Commun. Mass Spectrom., 25, pp. 2971-2980Fanigliulo, A., Cabooter, D., Bellazzi, G., Allieri, B., Rottigni, A., Desmet, G., Kinetic performance of reversed-phase C18 high-performance liquid chromatography columns compared by means of the Kinetic Plot Method in pharmaceutically relevant applications (2011) J. Chromatogr. A, 1218, pp. 3351-3359Davies, N.H., Euerby, M.R., McCalley, D.V., Study of overload for basic compounds in reversed-phase high performance liquid chromatography as a function of mobile phase pH (2006) J. Chromatogr. A, 1119, pp. 11-19Davies, N.H., Euerby, M.R., McCalley, D.V., Analysis of basic compounds by reversed-phase high-performance liquid chromatography using hybrid inorganic/organic phases at high pH (2008) J. Chromatogr. A, 1178, pp. 71-78Fallas, M.M., Buckenmaier, S.M.C., McCalley, D.V., A comparison of overload behaviour for some sub 2ÎŒm totally porous and sub 3ÎŒm shell particle columns with ionised solutes (2012) J. Chromatogr. A, 1235, pp. 49-59Rainville, P.D., Smith, N.W., Cowan, D., Plumb, R.S., Comprehensive investigation of the influence of acidic, basic, and organic mobile phase compositions on bioanalytical assay sensitivity in positive ESI mode LC/MS/MS (2012) J. Pharm. Biomed. Anal., 59, pp. 138-150Pesek, J.J., Matyska, M.T., A new approach to bioanalysis: aqueous normal-phase chromatography with silica hydride stationary phases (2012) Bioanalysis, 4, pp. 845-853Soukup, J., Jandera, P., Hydrosilated silica-based columns: the effects of mobile phase and temperature on dual hydrophilic-reversed-phase separation mechanism of phenolic acids (2012) J. Chromatogr. A, 1228, pp. 125-134Soukup, J., Jandera, P., The effect of temperature and mobile phase composition on separation mechanism of flavonoid compounds on hydrosilated silica-based columns (2012) J. Chromatogr. A, 1245, pp. 98-108Pesek, J.J., Matyska, M.T., Boysen, R.I., Yang, Y., Hearn, M.T.W., Aqueous normal-phase chromatography using silica-hydride-based stationary phases (2013) Trends Anal. Chem., 42, pp. 64-73Pesek, J.J., Matyska, M.T., Our favorite materials: silica hydride stationary phases (2009) J. Sep. Sci., 32, pp. 3999-4011O'Sullivan, G.P., Polar-embedded and polar-endcapped stationary phases for LC (2010) Anal. Lett., 43, pp. 10-11Engelhardt, H., GrĂŒner, R., Schererv, M., The polar selectivities of non-polar reversed phases (2001) Chromatographia, 53, pp. S154-S161Layne, J., Characterization and comparison of the chromatographic performance of conventional, polar-embedded, and polar-endcapped reversed-phase liquid chromatography stationary phases (2002) J. Chromatogr. A, 957, pp. 149-164Kirkland, J.J., Henderson, J.W., Martozella, J.D., Bidlingmeyer, B.A., Varta-Runell, J., Adams, J.B., A highly stable alkyl-amide silica-based column packing for reversed-phase HPLC of polar and ionizable compounds (1999) LC-GC, 17, pp. 634-639Przybyciel, M., Majors, R.E., Columns for reversed phase LC separations in highly aqueous mobile phases (2002) LC-GC N. Am., 15, pp. 583-593Euerby, M.R., James, M., Petersson, P., Chromatographic classification and comparison of commercially available reversed-phase liquid chromatographic columns containing polar embedded groups/amino endcappings using principal component analysis (2005) J. Chromatogr. A, 1088, pp. 1-15http://www.acdlabs.com/resources/freeware/, (accessed January 2012)NovĂĄkovĂĄ, L., Hana, V., Solich, P., Evaluation of new mixed-mode UHPLC stationary phases and the importance of stationary phase choice when using low ionic-strength mobile phase additives (2012) Talanta, 93, pp. 99-105Davies, N.H., Euerby, M.R., McCalley, D.V., A study of retention and overloading of basic compounds with mixed-mode reversed-phase/cation-exchange columns in high performance liquid chromatography (2007) J. Chromatogr. A, 1138, pp. 65-72Long, Z., Wang, C., Guo, Z., Zhang, X., Nordahl, L., Liang, X., Strong cation exchange column allow for symmetrical peak shape and increased sample loading in the separation of basic compounds (2012) J. Chromatogr. A, 1256, pp. 67-71Petersson, P., Euerby, M.R., Characterisation of RPLC columns packed with porous sub two-micron particles (2007) J. Sep. Sci., 30, pp. 2012-2024Martosella, J., Broske, A.D., Henderson, J.W., Link, J., Liu, J., Martone, N., Permar, B., Wang, H.L., Lifetime stability and comparative performance analyses of reversed-phase ultra high performance liquid chromatography (UHPLC) columns (2010) Presented at HPLC 2010Russo, R., Guillarme, D., Nguyen, D.T.-T., Bicchi, C., Rudaz, S., Veuthey, J.-L., Pharmaceutical applications on columns packed with sub-2ÎŒm particles (2008) J. Chromatogr. Sci., 46, pp. 199-208Chester, T.L., Recent developments in high-performance liquid chromatography stationary phases (2013) Anal. Chem., 85, pp. 579-589Fekete, S., Ganzler, K., Fekete, J., Facts and myths about columns packed with sub-3ÎŒm and sub-2ÎŒm particles (2010) J. Pharm. Biomed. Anal., 51, pp. 56-64Petersson, P., Forssen, P., Edström, L., Samied, F., Tattertone, S., Clarke, A., Fornstedt, T., Why ultra high performance liquid chromatography produces more tailing peaks than high performance liquid chromatography, why it does not matter and how it can be addressed (2011) J. Chromatogr. A, 1218, pp. 6914-6921Kirkland, J.J., Superficially porous silica microspheres for the fast high-performance liquid chromatography of macromolecules (1992) Anal. Chem., 64, pp. 1239-1245Ali, I.Z.A., Al-Othman, Z.A., Nagae, N., Gaitonde, V.D., Dutta, K.K., Recent trends in ultra-fast HPLC: new generation superficially porous silica columns (2012) J. Sep. Sci., 35, pp. 3235-3249Ali, I., Al-Othman, Z.A., Al-Za'abi, M., Superficially porous particles columns for super fast HPLC separations (2012) Biomed. Chromatogr., 26, pp. 1001-1008Fekete, S., Olah, E., Fekete, J., Fast liquid chromatography: the domination of core-shell and very fine particles (2012) J. Chromatogr. A, 1228, pp. 57-71Fekete, S., Fekete, J., Ganzle, K., Shell and small particles: evaluation of new column technology (2009) J. Pharm. Biomed. Anal., 49, pp. 64-71Gritti, F., Cavazzini, A., Marchetti, N., Guiochon, G., Comparison between the efficiencies of columns packed with fully and partially porous C18-bonded silica materials (2007) J. Chromatogr. A, 1157, pp. 289-303Fekete, S., Fekete, J., Ganzle, K., Characterization of new types of stationary phases for fast liquid chromatographic applications (2009) J. Pharm. Biomed. Anal., 49, pp. 64-71Ruta, J., Zurlino, D., Grivel, C., Heinisch, S., Veuthey, J.-L., Guillarme, D., Evaluation of columns packed with shell particles with compounds of pharmaceutical interest (2012) J. Chromatogr. A, 1228, pp. 221-231Heinisch, S., D'Attoma, A., Grivel, C., Effect of pH additive and column temperature on kinetic performance of two different sub-2ÎŒm stationary phases for ultrafast separation of charged analytes (2012) J. Chromatogr. A, 1228, pp. 135-147Fekete, S., Ganzler, K., Fekete, J., Efficiency of the new sub-2ÎŒm core-shell (Kinetexℱ) column in practice, applied for small and large molecule separation (2011) J. Pharm. Biomed. Anal., 54, pp. 482-490Gritti, F., Guiochon, G., Comparative study of the performance of columns packed with several new fine silica particles: would the external roughness of the particles affect column properties? (2007) J. Chromatogr. A, 1166, pp. 30-46Fekete, S., Rudaz, S., Fekete, J., Guillarme, D., Analysis of recombinant monoclonal antibodies by RPLC: toward a generic method development approach (2012) J. Pharm. Biomed. Anal., 70, pp. 158-168Fekete, S., Berky, R., Fekete, J., Veuthey, J.-L., Guillarme, D., Evaluation of a new wide pore core-shell material (Aerisℱ WIDEPORE) and comparison with other existing stationary phases for the analysis of intact proteins (2012) J. Chromatogr. A, 1236, pp. 177-188Fekete, S., Berky, R., Fekete, J., Veuthey, J.-L., Guillarme, D., Evaluation of recent very efficient wide-pore stationary phases for the reversed-phase separation of proteins (2012) J. Chromatogr. A, 1252, pp. 90-103Nawrocki, J., Dunlap, C., McCormick, A., Carr, P.W., Part I. Chromatography using ultra-stable metal oxide-based stationary phases for HPLC (2004) J. Chromatogr. A, 1028, pp. 1-30Kirkland, J.J., van Straten, M.A., Claessens, H.A., Reversed-phase high-performance liquid chromatography of basic compounds at pH 11 with silica-based column packings (1998) J. Chromatogr. A, 797, pp. 111-120Claessens, H.A., van Straten, M.A., Kirkland, J.J., Effect of buffers on silica-based column stability in reversed-phase high-performance liquid chromatography (1996) J. Chromatogr. A, 728, pp. 259-270Borges, E.M., Collins, C.H., Effects of pH and temperature on the chromatographic performance and stability of immobilized poly(methyloctylsiloxane) stationary phases (2012) J. Chromatogr. A, 1227, pp. 174-180Marchand, D.H., Carr, P.W., McCalley, D.V., Neue, U.D., Dolan, J.W., Snyder, L.R., Contributions to reversed-phase column selectivity. II. Cation Exchange (2011) J. Chromatogr. A, 1218, pp. 7110-7129Agrafiotou, P., RĂ fols, C., Castells, C., Bosch, E., RosĂ©s, M., Simultaneous effect of pH, temperature and mobile phase composition in the chromatographic retention of ionizable compounds (2011) J. Chromatogr. A, 1218, pp. 4995-5009Subirats, X., Bosch, E., RosĂ©s, M., Retention of ionisable compounds on high-performance liquid chromatography XVIII: pH variation in mobile phases containing formic acid, piperazine, tris, boric acid or carbonate as buffering systems and acetonitrile as organic modifier (2009) J. Chromatogr. A, 1216, pp. 2491-2498Subirats, X., Bosch, E., RosĂ©s, M., Retention of ionisable compounds on high-performance liquid chromatography XVII: estimation of the pH variation of aqueous buffers with the change of the methanol fraction of the mobile phase (2007) J. Chromatogr. A, 1138, pp. 203-215Guillarme, D., Russo, R., Rudaz, S., Bicchi, C., Veuthey, J.-L., Chromatographic performance of silica-based stationary phases in high temperature liquid chromatography: pharmaceutical applications (2007) Curr. Pharm. Anal., 3, pp. 221-229Trammell, B.C., Boissel, C.A., Carignan, C., O'Shea, D.J., Hudalla, C.J., Neue, U.D., Iraneta, P.C., Development of an accelerated low-pH reversed-phase liquid chromatography column stability test (2004) J. Chromatogr. A, 1060, pp. 153-163Ma, L., Carr, P.W., Loss of bonded phase in reversed-phase liquid chromatography in acidic eluents and practical ways to improve column stability (2007) Anal. Chem., 79, pp. 4681-4686Euerby, M.R., Johnson, C.M., Rushin, I.D., Tennekoon, D.A.S.S., Investigation into the epimerisation of tipredane ethylsulphoxide diastereoisomers during chromatographic analysis on reversed phase silica. I. Investigations into the reaction mechanism (1995) J. Chromatogr. A, 705, pp. 219-227Euerby, M.R., Johnson, C.M., Rushin, I.D., Tennekoon, D.A.S.S., Investigation into the epimerisation of tipredane ethylsulphoxide diastereoisomers during chromatographic analysis on reversed phase silica. II. The involvement of metals in commercially available C18 silicas (1995) J. Chromatogr. A, 705, pp. 229-245Teutenberg, T., Hollebekkers, K., Wiese, S., Boergers, A., Temperature and pH-stability of commercial stationary phases (2009) J. Sep. Sci., 32, pp. 1262-1274Neue, U.D., Serowik, E., Iraneta, P., Alden, B.A., Walter, T.H., Universal procedure for the assessment of the reproducibility and the classification of silica-based reversed-phase packings. I. Assessment of the reproducibility of reversed-phase packings (1999) J. Chromatogr. A, 849, pp. 87-100Neue, U.D., Alden, B.A., Walter, T.H., Universal procedure for the assessment of the reproducibility and the classification of silica-based reversed-phase packings. II. Classification of reversed-phase packings (1999) J. Chromatogr. A, 849, pp. 101-116Ye, C., Terfloth, G., Li, Y., Kord, A., A systematic stability evaluation of analytical RP-HPLC columns (2009) J. Pharm. Biomed. Anal., 50, pp. 426-43

    Comparison Of Classical Chromatographic Tests With A Chromatographic Test Applied To Stationary Phases Prepared By Thermal Immobilization Of Poly (methyloctylsiloxane) Onto Silica

    No full text
    Stationary-phase evaluation in reversed-phase liquid chromatography (RP-LC) is not a straightforward process. A number of tests to characterize and classify stationary phases have been suggested. The results of these various tests, however, do not always describe the real properties of the stationary phase. This study critically compares several tests for RP-LC stationary phases, including the Engelhardt, Tanaka, and SRM 870 tests, as well as an in-house test, with emphasis on the stationary-phase descriptors of hydrophobicity and silanol activity. The stationary phases were prepared by thermal immobilization of poly(methyloctylsiloxane) onto silica. Hydrophobicity data fromthe tests were generally good and interchangeable between the several tests. In contrast, the silanol activity results of the various tests differ significantly. As a consequence, stationary phase classification with respect to silanol activity depends considerably on the test method applied. A new classification method for silanol activity is proposed. © Springer-Verlag 2012.4041029853002Marchand, D.H., Carr, P.W., McCalley, D.V., Neue, U.D., Dolan, J.W., Snyder, L.R., (2011) J Chromatogr A, 1218, pp. 7110-7129Vyƈuchalovå, K., Jandera, P., (2011) Anal Lett, 44, pp. 1640-1662LÀmmerhofer, M., Nogueira, R., Lindner, W., (2011) Anal Bioanal Chem, 400, pp. 2517-2530Borges, E.M., Euerby, M.R., Collins, C.H., (2012) Anal Bioanal Chem., , doi:10.1007/s00216-011-5674-zNémetha, T., Haghedoorena, E., Noszålc, B., Hoogmartensa, J., Adams, E., (2008) J Chemometrics;, 22, pp. 178-185Buszewski, B., Kowalska, S., Krupczynska, K., (2007) Crit Rev Anal Chem, 35, pp. 89-116Lesellier, E., West, C., (2007) J Chromatogr A, 1158, pp. 329-360De Matteis, C.I., Simpson, D.A., Euerby, M.R., Shaw, P.N., Barrett, D.A., (2012) J Chromatogr A., , doi:10.1016/j.chroma.2011.12.090Engelhardt, H., Jungheim, M., (1990) Chromatographia, 29, pp. 59-68Schmitz, S.J., Zwanziger, H., Engelhardt, H., (1991) J Chromatogr, 544, pp. 381-391Engelhardt, H., Arangio, M., Lobert, T., (1997) LCGC Int, 10, pp. 803-812Sander, L., Wise, S.A., (2003) J Sep Sci, 26, pp. 283-294Rimmer, C.A., Lane, C., Sander, L.C., (2009) Anal Bioanal Chem, 394, pp. 285-291(2002) SRM 870, Column Performance Test Mixture, , National Institute of Standards and Technology, Gaithersburg, MDAccessed on April 2011, , http://www.usp.org/USPNF/columnsDB.htmlKimata, K., Iwaguchi, K., Onishi, S., Jinno, K., Eksteen, R., Hosoya, K., Arki, M., Tanaka, N., (1989) J Chromatogr Sci, 27, pp. 721-728Euerby, M.R., Petersson, P., (2000) LC-GC Eur, 13, pp. 665-677Euerby, M.R., McKeown, A.P., Petersson, P., (2003) J Sep Sci, 26, pp. 295-306Euerby, M.R., Petersson, P., (2003) J Chromatogr A, 994, pp. 13-36Euerby, M.R., Petersson, P.W., Campbell, W., Roe, W., (2007) J Chromatogr A, 1154, pp. 138-151Euerby, M.R., James, M., Petersson, P., (2011) J Chromatogr A., , doi:10.1016/j.chroma.2011.05.105Accessed On: April 2011, , http://www.acdlabs.com/resources/freeware/Neue, U.D., Van Tran, K., Iraneta, P.C., Alden, B.A., (2003) J. Sep Sci, 26, pp. 174-186Rogers, S.D., Dorsey, J.G., (2000) J Chromatogr A, 892, pp. 57-65Visky, D., Heyden, Y.V., Ivany, T., Baten, P., De Beer, J., Kovacs, Z., Noszal, B., Hoogmartens, J., (2002) J Chromatogr A, 977, pp. 39-58Van Stratenma, C., Cramers, C.A., Jezierska, M., Buszewski, B., (1998) J Chromatogr A, 826, pp. 135-156Rogers, S.D., (2003), http://etd.lib.fsu.edu/theses/available/etd-08192004-103718/unrestricted/ Rogers_S.pdf, Doctoral thesis, The Florida State University, Tallahassee. Accessed on: May 2011(2008) Comparison Guide to C18 Reversed Phase HPLC Columns, , http://www.mac-mod.com/pdf/technical-report/036-ColumnComparisonGuide.pdf, MAC-MOD Analytical, Chadds Ford, PA, June, Accessed on: January 2012Stella, C., Rudaz, S., Veuthey, J.L., Tchapla, A., (2001) Chromatographia Supplement 1, 53, pp. S113-S131McCalley, D.V., (1999) J Chromatogr A, 844, pp. 23-38McCalley, D.V., (2010) J Chromatogr A, 1217, pp. 858-880Okusa, K., Suita, Y., Otsuka, Y., Tahara, M., Ikegami, T., Tanaka, N., Ohira, M., Takahashi, M., (2010) J Sep Sci, 33, pp. 348-358Borges, E.M., Collins, C.H., (2012) J Chromatogr A., , doi:10.1016/j.chroma.2012.01.001Borges, E.M., Silva, C.G.A., Collins, C.H., (2010) Microchem. J, 96, pp. 120-125Borges, E.M., Collins, C.H., (2011) J J Sep Sci, 34, pp. 1141-1148Tonhi, E., Collins, K.E., Collins, C.H., (2002) J ChromatogrA, 948, pp. 97-107Bachmann, S., Melo, L.F.C., Silva, R.B., Anazawa, T.A., Jardim, I.C.S.F., Collins, K.E., Collins, C.H., Albert, K., (2001) Chem.Mater, 13, pp. 1874-1879Hu, Y., Yang, X., Carr, P.W., (2002) J Chromatogr A, 968, pp. 17-2

    Characterization Of A Mixed-mode Reversed-phase/cation-exchange Stationary Phase Prepared By Thermal Immobilization Of Poly(dimethylsiloxane) Onto The Surface Of Silica

    No full text
    A novel stationary phase prepared by the thermal immobilization of poly(dimethylsiloxane) onto the surface of silica (PDMS-SiO 2) has been described, evaluated and compared with 229 commercially available RP-LC stationary phases using the Tanaka column classification protocol. The phase exhibited many unique chromatographic properties and, based on the phases in the database, was most similar to the fluoroalkylated phases (aside from the obvious lack of fluoro selectivity imposed by the C-F dipole). The phase exhibited classic reversed-phase behaviour in acid mobile phase conditions and mixed-mode reversed-phase/cation-exchange retention behaviour in neutral mobile phase conditions. The phase exhibited acceptable stability at both low and intermediate pH, conditions which should impart optimum chromatographic selectivity to the phase. Retention of basic analytes was shown to occur by a "three site model" as proposed by Neue. This new PDMS-SiO 2 stationary phase is extremely interesting in that the dominancy of its hydrophobic and ion-exchange interactions can be controlled by the influence of mobile phase pH, buffer type and concentration. The PDMS-SiO 2 stationary phase may provide a complementary tool to reversed-phase and HILIC stationary phases. The present results highlight the fact that the type of buffer, its concentration and pH can not only affect peak shape but also retention, selectivity and hence chromatographic resolution. Therefore, in method development and optimization strategies it is suggested that more emphasis should be given to the evaluation of these mobile phase operating parameters especially when basic solutes are involved. © 2012 Springer-Verlag.402620432055Abbood, A., Herrenknecht, C., Proczek, G., Descroix, S., Rodrigo, J., Taverna, M., Smadja, C., (2011) Anal Bioanal Chem, 400, pp. 459-468. , 10.1007/s00216-011-4762-4 1:CAS:528:DC%2BC3MXitFKisro%3DAgrafiotou, P., Ràfols, C., Castells, C., Bosch, E., Roses, M., (2011) J Chromatogr A, 1218, pp. 4995-5009. , 10.1016/j.chroma.2010.12.119 1:CAS:528:DC%2BC3MXoslCgur0%3DBachmann, S., Melo, L.F.C., Silva, R.B., Anazawa, T.A., Jardim, I.C.S.F., Collins, K.E., Collins, C.H., Albert, K., Synthesis and solid-state NMR investigations of radiation-immobilized polysiloxanes on bare, titanium-grafted, and zirconium-grafted silicas (2001) Chemistry of Materials, 13 (5), pp. 1874-1879. , DOI 10.1021/cm001179fBorges, E.M., Collins, C.H., (2011) J Sep Sci, 34, pp. 3011-3019. , 10.1002/jssc.201100345 1:CAS:528:DC%2BC3MXht1SlurzOBorges, E.M., Collins, C.H., (2011) J Chromatogr A, 1218, pp. 4378-4388. , 10.1016/j.chroma.2011.05.007 1:CAS:528:DC%2BC3MXotVGms7c%3DBorges, E.M., Collins, C.H., (2011) J Sep Sci, 34, pp. 1141-1148. , 10.1002/jssc.201000700 1:CAS:528:DC%2BC3MXls1Cjtr4%3DBorges, E.M., Silva, C.G.A., Collins, C.H., (2010) Microchem J, 96, pp. 120-125. , 10.1016/j.microc.2010.02.005 1:CAS:528:DC%2BC3cXmvVWlsbk%3DBuckenmaier, S.M.C., McCalley, D.V., Euerby, M.R., Determination of ionisation constants of organic bases in aqueous methanol solutions using capillary electrophoresis (2004) Journal of Chromatography A, 1026 (1-2), pp. 251-259. , DOI 10.1016/j.chroma.2003.11.007Buszewski, B., Kowalska, S., Krupczynska, K., (2007) Crit Rev Anal Chem, 35, pp. 89-116. , 10.1080/10408340500207367Claessens, H.A., Van Straten, M.A., Cramers, C.A., Jezierska, M., Buszewski, B., Comparative study of test methods for reversed-phase columns for high-performance liquid chromatography (1998) Journal of Chromatography A, 826 (2), pp. 135-156. , DOI 10.1016/S0021-9673(98)00749-3, PII S0021967398007493Collins, K.E., Franchon, A.C., Icsf, J., Radanovic, E., Gonçalves, M.C., (2000) LCGC, 18, pp. 106-117. , 1:CAS:528:DC%2BD3cXhtlaitrg%3DCollins, C.H., Silva, C.R., Faria, A.M., Collins, K.E., Icsf, J., (2009) J Braz Chem Soc, 20, pp. 604-612. , 10.1590/S0103-50532009000400004 1:CAS:528:DC%2BD1MXms1Gksbs%3DDai, J., Carr, P.W., (2009) J Chromatogr A, 1216, pp. 6695-6705. , 10.1016/j.chroma.2009.07.062 1:CAS:528:DC%2BD1MXhtV2rsLbMEngelhardt, H., Arangio, M., Lobert, T., (1997) LCGC Int, 10, p. 803Euerby, M.R., James, M., Petersson, P., (2011) J Chromatogr A, , doi: 10.1016/j.chroma.2011.05.105Euerby, M.R., McKeown, A.P., Petersson, P., Chromatographic classification and comparison of commercially available perfluorinated stationary phases for reversed-phase liquid chromatography using principal component analysis (2003) Journal of Separation Science, 26 (3-4), pp. 295-306. , DOI 10.1002/jssc.200390035Euerby, M.R., Petersson, P., (2000) LCGC Eur, 13, pp. 665-677Euerby, M.R., Petersson, P., Chromatographic classification and comparison of commercially available reversed-phase liquid chromatographic columns using principal component analysis (2003) Journal of Chromatography A, 994 (1-2), pp. 13-36. , DOI 10.1016/S0021-9673(03)00393-5Faria, A.M., Collins, C.H., Icsf, J., (2009) J Braz Chem Soc, 20, pp. 1385-1398. , 10.1590/S0103-50532009000800002 1:CAS:528:DC%2BD1MXhtlGjsrnMhttp://www.acdlabs.com/resources/freeware/, AccessedinApril2011http://www.usp.org/USPNF/columnsDB.html, AccessedinApril2011Kimata, K., Iwaguchi, K., Onishi, S., Jinno, K., Eksteen, R., Hosoya, K., Arki, M., Tanaka, N., (1989) J Chromatogr Sci, 27, pp. 721-728. , 1:CAS:528:DyaK3cXhsFWjsro%3DLÀmmerhofer, M., Nogueira, R., Lindner, W., (2011) Anal Bioanal Chem, 400, pp. 2517-2530. , 10.1007/s00216-011-4755-3Lesellier, E., West, C., Description and comparison of chromatographic tests and chemometric methods for packed column classification (2007) Journal of Chromatography A, 1158 (1-2), pp. 329-360. , DOI 10.1016/j.chroma.2007.03.122, PII S0021967307006358, Data Analysis in ChromatographyMajors, R.E., (2010) LCGC Column Technol Suppl, 2010 (26), pp. 8-19McCalley, D.V., Comparison of the performance of conventional C 18 phases with others of alternative functionality for the analysis of basic compounds by reversed-phase high-performance liquid chromatography (1999) Journal of Chromatography A, 844 (1-2), pp. 23-38. , DOI 10.1016/S0021-9673(99)00250-2, PII S0021967399002502McCalley, D.V., (2010) J Chromatogr A, 1217, pp. 858-880. , 10.1016/j.chroma.2009.11.068 1:CAS:528:DC%2BC3cXotlSrtA%3D%3DNémetha, T., Haghedoorena, E., Noszålc, B., Hoogmartensa, J., Adams, E., (2008) J Chemom, 22, pp. 178-185. , 10.1002/cem.1108Neue, U.D., Tran, K., Mendez, A., Carr, P.W., The combined effect of silanols and the reversed-phase ligand on the retention of positively charged analytes (2005) Journal of Chromatography A, 1063 (1-2), pp. 35-45. , DOI 10.1016/j.chroma.2004.11.096, PII S0021967304021879Okusa, K., Suita, Y., Otsuka, Y., Tahara, M., Ikegami, T., Tanaka, N., Ohira, M., Takahashi, M., (2010) J Sep Sci, 33, pp. 348-358. , 10.1002/jssc.200900760 1:CAS:528:DC%2BC3cXisVait7s%3DPirouette 3.11 User GuideRimmer, C.A., Lane, C., Sander, L.C., (2009) Anal Bioanal Chem, 394, pp. 285-291. , 10.1007/s00216-009-2649-4 1:CAS:528:DC%2BD1MXhvFSgu74%3DRogers, S.D., Dorsey, J.G., (2000) J Chromatogr A, 892, pp. 57-65. , 10.1016/S0021-9673(00)00722-6 1:CAS:528:DC%2BD3cXntVSitrY%3DSander, L.C., Wise, S.A., A new standard reference material for column evaluation in reversed-phase liquid chromatography (2003) Journal of Separation Science, 26 (3-4), pp. 283-294. , DOI 10.1002/jssc.200390034Sliwka-Kaszynska, M., Gorczyca, G., Slebioda, M., (2010) J Chromatogr A, 1217, pp. 329-336. , 10.1016/j.chroma.2009.11.052 1:CAS:528:DC%2BD1MXhs1WnsLjKStella, C., Rudaz, S., Mottaz, M., Carrupt, P.-A., Veuthey, J.-L., Analysis of basic compounds at high pH values by reversed-phase liquid chromatography (2004) Journal of Separation Science, 27 (4), pp. 284-292. , DOI 10.1002/jssc.200301671Subirats, X., Bosch, E., Roses, M., Retention of ionisable compounds on high-performance liquid chromatography XVII. Estimation of the pH variation of aqueous buffers with the change of the methanol fraction of the mobile phase (2007) Journal of Chromatography A, 1138 (1-2), pp. 203-215. , DOI 10.1016/j.chroma.2006.10.087, PII S002196730602053XSubirats, X., Bosch, E., Roses, M., (2009) J Chromatogr A, 1216, pp. 5445-5448. , 10.1016/j.chroma.2009.05.044 1:CAS:528:DC%2BD1MXnt1Oltr4%3DTonhi, E., Collins, K.E., Collins, C.H., High-performance liquid chromatographic stationary phases based on poly(dimethylsiloxane) immobilized on silica (2005) Journal of Chromatography A, 1075 (1-2), pp. 87-94. , DOI 10.1016/j.chroma.2005.03.110, PII S0021967305006643Visky, D., Vander Heyden, Y., Ivanyi, T., Baten, P., De Beer, J., Kovacs, Z., Noszal, B., Hoogmartens, J., Characterisation of reversed-phase liquid chromatographic columns by chromatographic tests. Evaluation of 36 test parameters: Repeatability, reproducibility and correlation (2002) Journal of Chromatography A, 977 (1), pp. 39-58. , DOI 10.1016/S0021-9673(02)01344-4, PII S0021967302013444Vyƈuchalovå, K., Jandera, P., (2011) Anal Lett, 44, pp. 1640-1662. , 10.1080/00032719.2010.520393Yang, X., Dai, J., Carr, P.W., Analysis and critical comparison of the reversed-phase and ion-exchange contributions to retention on polybutadiene coated zirconia and octadecyl silane bonded silica phases (2003) Journal of Chromatography A, 996 (1-2), pp. 13-31. , DOI 10.1016/S0021-9673(03)00537-

    Migration behaviour of weakly retained, charged analytes in voltage-assisted micro-high performance liquid chromatography

    No full text
    The application of voltage in micro-high performance liquid chromatography (micro-HPLC) creates a system where separation is governed by a hybrid differential migration process, which entails the features of both HPLC and capillary zone electrophoresis (CZE), i.e., chromatographic retention and electrophoretic migration. In this paper, we use our previously published approach to decouple these two mechanisms via analysis of the input data for estimation of electrokinetic parameters, such as conductivity, equivalent lengths, mobilities and velocities. Separation of weakly retained, charged analytes was performed via voltage-assisted micro-HPLC. Contrary to conclusions from data analysis using the conventional definitions of the retention factor, it is shown that our approach allows us to isolate the “chromatographic retention” component and thus, investigate the “modification” of the retention process upon application of voltage in micro-HPLC. It is shown that the traditional approaches of calculating retention factor would erroneously lead to conclusion that the retention behavior of these analytes changes upon application of voltage. However, the approach suggested here demonstrates that under the conditions investigated, most of the charged analytes do not show any significant retention on the columns and that all the changes in their retention times can be attributed to their electrophoretic migration
    corecore