1,034 research outputs found

    How do sound waves in a Bose-Einstein condensate move so fast?

    Full text link
    Low-momentum excitations of a dilute Bose-Einstein condensate behave as phonons and move at a finite velocity v_s. Yet the atoms making up the phonon excitation each move very slowly; v_a = p/m --> 0. A simple "cartoon picture" is suggested to understand this phenomenon intuitively. It implies a relation v_s/v_a = N_ex, where N_ex is the number of excited atoms making up the phonon. This relation does indeed follow from the standard Bogoliubov theory.Comment: 6 pages, 2 figures (.eps), LaTeX2e. More introductory discussion adde

    Analog model for an expanding universe

    Full text link
    Over the last few years numerous papers concerning analog models for gravity have been published. It was shown that the dynamical equation of several systems (e.g. Bose-Einstein condensates with a sink or a vortex) have the same wave equation as light in a curved-space (e.g. black holes). In the last few months several papers were released which deal with simulations of the universe. In this article the de-Sitter universe will be compared with a freely expanding three-dimensional spherical Bose-Einstein condensate. Initially the condensate is in a harmonic trap, which suddenly will be switched off. At the same time a small perturbation will be injected in the center of the condensate cloud. The motion of the perturbation in the expanding condensate will be discussed, and after some transformations the similarity to an expanding universe will be shown.Comment: Presented at the 4th Australasian conference on General Relativity and Cosmology, Monash U, Melbourne, 7-9 January 200

    Velocity of sound in a Bose-Einstein condensate in the presence of an optical lattice and transverse confinement

    Full text link
    We study the effect of the transverse degrees of freedom on the velocity of sound in a Bose-Einstein condensate immersed in a one-dimensional optical lattice and radially confined by a harmonic trap. We compare the results of full three-dimensional calculations with those of an effective 1D model based on the equation of state of the condensate. The perfect agreement between the two approaches is demonstrated for several optical lattice depths and throughout the full crossover from the 1D mean-field to the Thomas Fermi regime in the radial direction.Comment: final versio

    In-situ velocity imaging of ultracold atoms using slow--light

    Full text link
    The optical response of a moving medium suitably driven into a slow-light propagation regime strongly depends on its velocity. This effect can be used to devise a novel scheme for imaging ultraslow velocity fields. The scheme turns out to be particularly amenable to study in-situ the dynamics of collective and topological excitations of a trapped Bose-Einstein condensate. We illustrate the advantages of using slow-light imaging specifically for sloshing oscillations and bent vortices in a stirred condensate

    Measurement-induced Squeezing of a Bose-Einstein Condensate

    Full text link
    We discuss the dynamics of a Bose-Einstein condensate during its nondestructive imaging. A generalized Lindblad superoperator in the condensate master equation is used to include the effect of the measurement. A continuous imaging with a sufficiently high laser intensity progressively drives the quantum state of the condensate into number squeezed states. Observable consequences of such a measurement-induced squeezing are discussed.Comment: 4 pages, 2 figures, submitted to PR

    Bose-stimulated scattering off a cold atom trap

    Get PDF
    The angle and temperature dependence of the photon scattering rate for Bose-stimulated atom recoil transitions between occupied states is compared to diffraction and incoherent Rayleigh scattering near the Bose-Einstein transition for an optically thin trap in the limit of large particle number, N. Each of these processes has a range of angles and temperatures for which it dominates over the others by a divergent factor as N->oo.Comment: 18 pages (REVTeX), no figure

    Quantum carpet interferometry for trapped atomic Bose-Einstein condensates

    Full text link
    We propose an ``interferometric'' scheme for Bose-Einstein condensates using near-field diffraction. The scheme is based on the phenomenon of intermode traces or quantum carpets; we show how it may be used in the detection of weak forces.Comment: 4 figures. Submitted to Phys. Rev.

    Interferometric detection of a single vortex in a dilute Bose-Einstein condensate

    Full text link
    Using two radio frequency pulses separated in time we perform an amplitude division interference experiment on a rubidium Bose-Einstein condensate. The presence of a quantized vortex, which is nucleated by stirring the condensate with a laser beam, is revealed by a dislocation in the fringe pattern.Comment: 4 pages, 4 figure

    The Bogoliubov Theory of a BEC in Particle Representation

    Full text link
    In the number-conserving Bogoliubov theory of BEC the Bogoliubov transformation between quasiparticles and particles is nonlinear. We invert this nonlinear transformation and give general expression for eigenstates of the Bogoliubov Hamiltonian in particle representation. The particle representation unveils structure of a condensate multiparticle wavefunction. We give several examples to illustrate the general formalism.Comment: 10 pages, 9 figures, version accepted for publication in Phys. Rev.

    Mott insulators in an optical lattice with high filling factors

    Full text link
    We discuss the superfluid to Mott insulator transition of an atomic Bose gas in an optical lattice with high filling factors. We show that also in this multi-band situation, the long-wavelength physics is described by a single-band Bose-Hubbard model. We determine the many-body renormalization of the tunneling and interaction parameters in the effective Bose-Hubbard Hamiltonian, and consider the resulting model at nonzero temperatures. We show that in particular for a one or two-dimensional optical lattice, the Mott insulator phase is more difficult to realize than anticipated previously.Comment: 5 pages, 3 figures, title changed, major restructuring, resubmitted to PR
    corecore