19 research outputs found

    Spin Waves in Disordered III-V Diluted Magnetic Semiconductors

    Full text link
    We propose a new scheme for numerically computing collective-mode spectra for large-size systems, using a reformulation of the Random Phase Approximation. In this study, we apply this method to investigate the spectrum and nature of the spin-waves of a (III,Mn)V Diluted Magnetic Semiconductor. We use an impurity band picture to describe the interaction of the charge carriers with the local Mn spins. The spin-wave spectrum is shown to depend sensitively on the positional disorder of the Mn atoms inside the host semiconductor. Both localized and extended spin-wave modes are found. Unusual spin and charge transport is implied.Comment: 14 pages, including 11 figure

    Exchange anisotropy, disorder and frustration in diluted, predominantly ferromagnetic, Heisenberg spin systems

    Full text link
    Motivated by the recent suggestion of anisotropic effective exchange interactions between Mn spins in Ga1x_{1-x}Mnx_xAs (arising as a result of spin-orbit coupling), we study their effects in diluted Heisenberg spin systems. We perform Monte Carlo simulations on several phenomenological model spin Hamiltonians, and investigate the extent to which frustration induced by anisotropic exchanges can reduce the low temperature magnetization in these models and the interplay of this effect with disorder in the exchange. In a model with low coordination number and purely ferromagnetic (FM) exchanges, we find that the low temperature magnetization is gradually reduced as exchange anisotropy is turned on. However, as the connectivity of the model is increased, the effect of small-to-moderate anisotropy is suppressed, and the magnetization regains its maximum saturation value at low temperatures unless the distribution of exchanges is very wide. To obtain significant suppression of the low temperature magnetization in a model with high connectivity, as is found for long-range interactions, we find it necessary to have both ferromagnetic and antiferromagnetic (AFM) exchanges (e.g. as in the RKKY interaction). This implies that disorder in the sign of the exchange interaction is much more effective in suppressing magnetization at low temperatures than exchange anisotropy.Comment: 9 pages, 8 figure

    Influence of disorder on the ferromagnetism in diluted magnetic semiconductors

    Full text link
    Influence of disorder on the ferromagnetic phase transition in diluted (III,Mn)V semiconductors is investigated analytically. The regime of small disorder is addressed, and the enhancement of the critical temperature by disorder is found both in the mean field approximation and from the analysis of the zero temperature spin stiffness. Due to disorder, the spin wave fluctuations around the ferromagnetically ordered state acquire a finite mass. At large charge carrier band width, the spin wave mass squared becomes negative, signaling the breakdown of the ferromagnetic ground state and the onset of a noncollinear magnetic order.Comment: Replaced with revised version. 10 pages, 3 figure

    Magnetic spin excitations in Mn doped GaAs : A model study

    Full text link
    We provide a quantitative theoretical model study of the dynamical magnetic properties of optimally annealed Ga1x_{1-x}Mnx_xAs. This model has already been shown to reproduce accurately the Curie temperatures for Ga1x_{1-x}Mnx_xAs. Here we show that the calculated spin stiffness are in excellent agreement with those which were obtained from ab-initio based studies. In addition, an overall good agreement is also found with available experimental data. We have also evaluated the magnon density of states and the typical density of states from which the "mobility edge", separating the extended from localized magnon states, was determined. The power of the model lies in its ability to be generalized for a broad class of diluted magnetic semiconductor materials, thus it bridges the gap between first principle calculations and model based studies.Comment: 5 pages, 5 figures, Text and some figures revised to match the accepted versio

    A Dynamical Study of the Quantum p=2 Spherical Model

    Full text link
    We present a dynamical study of the disordered quantum p=2 spherical model at long times. Its phase behavior as a function of spin-bath coupling, strength of quantum fluctuations and temperature is characterized, and we identify different paramagnetic and coarsened regions. A quantum critical point at zero temperature in the limit of vanishing dissipation is also found. Furthermore we show analytically that the fluctuation-dissipation theorem is obeyed in the stationary regime.Comment: 13 pages, 4 figures; published versio

    Monte Carlo simulations of an impurity band model for III-V diluted magnetic semiconductors

    Full text link
    We report the results of a Monte Carlo study of a model of (III,Mn)V diluted magnetic semiconductors which uses an impurity band description of carriers coupled to localized Mn spins and is applicable for carrier densities below and around the metal-insulator transition. In agreement with mean field studies, we find a transition to a ferromagnetic phase at low temperatures. We compare our results for the magnetic properties with the mean field approximation, as well as with experiments, and find favorable qualitative agreement with the latter. The local Mn magnetization below the Curie temperature is found to be spatially inhomogeneous, and strongly correlated with the local carrier charge density at the Mn sites. The model contains fermions and classical spins and hence we introduce a perturbative Monte Carlo scheme to increase the speed of our simulations.Comment: 17 pages, 24 figures, 2 table

    Hard Loop Approach to Anisotropic Systems

    Get PDF
    Anisotropic systems of quarks and gluons, which at least for sufficiently short space-time intervals can be treated as homogeneous and static, are considered. The gluon polarization tensor of such a system is explicitly computed within the semiclassical kinetic and Hard Loop diagrammatic theories. The equivalence of the two approaches is demonstrated. The quark self energy is computed as well, and finally, the dispersion relations of quarks and gluons in the anisotropic medium are discussed.Comment: 10 pages, revised to appear in Phys. Rev.

    Temperature-dependent magnetization in diluted magnetic semiconductors

    Full text link
    We calculate magnetization in magnetically doped semiconductors assuming a local exchange model of carrier-mediated ferromagnetic mechanism and using a number of complementary theoretical approaches. In general, we find that the results of our mean-field calculations, particularly the dynamical mean field theory results, give excellent qualitative agreement with the experimentally observed magnetization in systems with itinerant charge carriers, such as Ga_{1-x}Mn_xAs with 0.03 < x < 0.07, whereas our percolation-theory-based calculations agree well with the existing data in strongly insulating materials, such as Ge_{1-x}Mn_x. We comment on the issue of non-mean-field like magnetization curves and on the observed incomplete saturation magnetization values in diluted magnetic semiconductors from our theoretical perspective. In agreement with experimental observations, we find the carrier density to be the crucial parameter determining the magnetization behavior. Our calculated dependence of magnetization on external magnetic field is also in excellent agreement with the existing experimental data.Comment: 17 pages, 15 figure

    Spatially heterogeneous ages in glassy dynamics

    Full text link
    We construct a framework for the study of fluctuations in the nonequilibrium relaxation of glassy systems with and without quenched disorder. We study two types of two-time local correlators with the aim of characterizing the heterogeneous evolution: in one case we average the local correlators over histories of the thermal noise, in the other case we simply coarse-grain the local correlators. We explain why the former describe the fingerprint of quenched disorder when it exists, while the latter are linked to noise-induced mesoscopic fluctuations. We predict constraints on the pdfs of the fluctuations of the coarse-grained quantities. We show that locally defined correlations and responses are connected by a generalized local out-of-equilibrium fluctuation-dissipation relation. We argue that large-size heterogeneities in the age of the system survive in the long-time limit. The invariance of the theory under reparametrizations of time underlies these results. We relate the pdfs of local coarse-grained quantities and the theory of dynamic random manifolds. We define a two-time dependent correlation length from the spatial decay of the fluctuations in the two-time local functions. We present numerical tests performed on disordered spin models in finite and infinite dimensions. Finally, we explain how these ideas can be applied to the analysis of the dynamics of other glassy systems that can be either spin models without disorder or atomic and molecular glassy systems.Comment: 47 pages, 60 Fig

    Probing Fermi surface anisotropies in layered metals with AMRO

    No full text
    A layered crystal structure and strong interactions between electrons are common features of many interesting electronic materials. The coherence of interlayer charge transport and origin of intralayer anisotropies in such materials are important questions. We show that angle dependent magnetoresistance oscillations (AMRO) are sensitive to anisotropies around an intralayer Fermi surface, and discuss their asymptotic behaviour in the high field limit
    corecore