5 research outputs found
Decay rate and decoherence control in coupled dissipative cavities
We give a detailed account of the derivation of a master equation for two
coupled cavities in the presence of dissipation. The analytical solution is
presented and physical limits of interest are discussed. Firstly we show that
the decay rate of initial coherent states can be significantly modified if the
two cavities have different decay rates and are weakly coupled through a wire.
Moreover, we show that also decoherence rates can be substantially altered by
manipulation of physical parameters. Conditions for experimental realizations
are discussed.Comment: 19 pages, 1 table, accepted by Physica
Analysing a complementarity experiment on the quantum-classical boundary
The complementarity experiment reported in Bertet [{\it{et al.}} (2001),
{\it{Nature}} {\bf{411}}, 166.] is discussed. The role played by entanglement
in reaching the classical limit is pointed out. Dissipative and thermal effects
of the cavity are calculated and a simple modification of the experiment is
proposed in order to observe the progressive loss of the capacity of ``quantum
erasing''as a manifestation of the classical limit of quantum mechanics.Comment: 7 pages, 4 figure
Non-equilibrium entangled steady state of two independent two-level systems
We determine and study the steady state of two independent two-level systems
weakly coupled to a stationary non-equilibrium environment. Whereas this
bipartite state is necessarily uncorrelated if the splitting energies of the
two-level systems are different from each other, it can be entangled if they
are equal. For identical two-level systems interacting with two bosonic heat
baths at different temperatures, we discuss the influence of the baths
temperatures and coupling parameters on their entanglement. Geometric
properties, such as the baths dimensionalities and the distance between the
two-level systems, are relevant. A regime is found where the steady state is a
statistical mixture of the product ground state and of the entangled singlet
state with respective weights 2/3 and 1/3
Teleportation of a quantum state of a spatial mode with a single massive particle
Mode entanglement exists naturally between regions of space in ultra-cold
atomic gases. It has, however, been debated whether this type of entanglement
is useful for quantum protocols. This is due to a particle number
superselection rule that restricts the operations that can be performed on the
modes. In this paper, we show how to exploit the mode entanglement of just a
single particle for the teleportation of an unknown quantum state of a spatial
mode. We detail how to overcome the superselection rule to create any initial
quantum state and how to perform Bell state analysis on two of the modes. We
show that two of the four Bell states can always be reliably distinguished,
while the other two have to be grouped together due to an unsatisfied phase
matching condition. The teleportation of an unknown state of a quantum mode
thus only succeeds half of the time.Comment: 12 pages, 1 figure, this paper was presented at TQC 2010 and extends
the work of Phys. Rev. Lett. 103, 200502 (2009