9 research outputs found

    Observation of the Ankle and Evidence for a High-Energy Break in the Cosmic Ray Spectrum

    Full text link
    We have measured the cosmic ray spectrum at energies above 101710^{17} eV using the two air fluorescence detectors of the High Resolution Fly's Eye experiment operating in monocular mode. We describe the detector, PMT and atmospheric calibrations, and the analysis techniques for the two detectors. We fit the spectrum to models describing galactic and extragalactic sources. Our measured spectrum gives an observation of a feature known as the ``ankle'' near 3Ă—10183\times 10^{18} eV, and strong evidence for a suppression near 6Ă—10196\times 10^{19} eV.Comment: 14 pages, 9 figures. To appear in Physics Letters B. Accepted versio

    Measurement of Pressure Dependent Fluorescence Yield of Air: Calibration Factor for UHECR Detectors

    Full text link
    In a test experiment at the Final Focus Test Beam of the Stanford Linear Accelerator Center, the fluorescence yield of 28.5 GeV electrons in air and nitrogen was measured. The measured photon yields between 300 and 400 nm at 1 atm and 29 deg C are Y(760 Torr, air) = 4.42 +/- 0.73 and Y(760 Torr, nitrogen) = 29.2 +/- 4.8 photons per electron per meter. Assuming that the fluorescence yield is proportional to the energy deposition of a charged particle traveling through air, good agreement with measurements at lower particle energies is observed.Comment: 22 pages, 14 figures, 2 tables, submitted to Astroparticle Physic

    A Likelihood Method for Measuring the Ultrahigh Energy Cosmic Ray Composition

    Get PDF
    Air fluorescence detectors traditionally determine the dominant chemical composit ion of the ultrahigh energy cosmic ray flux by comparing the averaged slant depth of the shower maximum, XmaxX_{max}, as a function of energy to the slant depths expect ed for various hypothesized primaries. In this paper, we present a method to make a direct measurement of the expected mean number of protons and iron by comparing the shap es of the expected XmaxX_{max} distributions to the distribution for data. The advantages of this method includes the use of information of the full distribution and its ability to calculate a flux for various cosmic ray compositi ons. The same method can be expanded to marginalize uncertainties due to choice of spectra, hadronic models and atmospheric parameters. We demonstrate the technique with independent simulated data samples from a parent sample of protons and iron. We accurately predict the number of protons and iron in the parent sample and show that the uncertainties are meaningful.Comment: 11 figures, 22 pages, accepted by Astroparticle Physic

    Alternative Methods to Finding Patterns in HiRes Stereo Data

    Get PDF
    In this paper Ultra High Energy Cosmic Rays UHECRs data observed by the HiRes fluorescence detector in stereo mode is analyzed to search for events in the sky with an arrival direction lying on a great circle. Such structure is known as the arc structure. The arc structure is expected when the charged cosmic rays pass through the galactic magnetic field. The arcs searched for could represent a broad or a small scale anisotropy depending on the proposed source model for the UHECRs. The Arcs in this paper are looked for using Hough transform were Hough transform is a technique used to looking for patterns in images. No statistically significant arcs were found in this study

    An Information Processing Approach to Language and Reading Problems

    No full text
    corecore