13 research outputs found

    Abstract kinetic equations with positive collision operators

    Full text link
    We consider "forward-backward" parabolic equations in the abstract form Jdψ/dx+Lψ=0Jd \psi / d x + L \psi = 0, 0<x<τ 0< x < \tau \leq \infty, where JJ and LL are operators in a Hilbert space HH such that J=J=J1J=J^*=J^{-1}, L=L0L=L^* \geq 0, and kerL=0\ker L = 0. The following theorem is proved: if the operator B=JLB=JL is similar to a self-adjoint operator, then associated half-range boundary problems have unique solutions. We apply this theorem to corresponding nonhomogeneous equations, to the time-independent Fokker-Plank equation μψx(x,μ)=b(μ)2ψμ2(x,μ) \mu \frac {\partial \psi}{\partial x} (x,\mu) = b(\mu) \frac {\partial^2 \psi}{\partial \mu^2} (x, \mu), 0<x<τ 0<x<\tau, μR \mu \in \R, as well as to other parabolic equations of the "forward-backward" type. The abstract kinetic equation Tdψ/dx=Aψ(x)+f(x) T d \psi/dx = - A \psi (x) + f(x), where T=TT=T^* is injective and AA satisfies a certain positivity assumption, is considered also.Comment: 20 pages, LaTeX2e, version 2, references have been added, changes in the introductio

    Renormalization group analysis of a turbulent compressible fluid near d = 4: Crossover between local and non-local scaling regimes

    No full text
    We study scaling properties of the model of fully developed turbulence for a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field theoretic renormalization group (RG). The scaling properties in this approach are related to fixed points of the RG equation. Here we study a possible existence of other scaling regimes and an opportunity of a crossover between them. This may take place in some other space dimensions, particularly at d = 4. A new regime may there arise and then by continuity moves into d = 3. Our calculations have shown that there really exists an additional fixed point, that may govern scaling behaviour

    Renormalization group analysis of a turbulent compressible fluid near

    No full text
    We study scaling properties of the model of fully developed turbulence for a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field theoretic renormalization group (RG). The scaling properties in this approach are related to fixed points of the RG equation. Here we study a possible existence of other scaling regimes and an opportunity of a crossover between them. This may take place in some other space dimensions, particularly at d = 4. A new regime may there arise and then by continuity moves into d = 3. Our calculations have shown that there really exists an additional fixed point, that may govern scaling behaviour

    Turbulent compressible fluid: Renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields

    No full text
    We study a model of fully developed turbulence of a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field-theoretic renormalization group. In this approach, scaling properties are related to the fixed points of the renormalization group equations. Previous analysis of this model near the real-world space dimension 3 identified a scaling regime [N. V. Antonov, Theor. Math. Phys. 110, 305 (1997)TMPHAH0040-577910.1007/BF02630456]. The aim of the present paper is to explore the existence of additional regimes, which could not be found using the direct perturbative approach of the previous work, and to analyze the crossover between different regimes. It seems possible to determine them near the special value of space dimension 4 in the framework of double y and expansion, where y is the exponent associated with the random force and =4-d is the deviation from the space dimension 4. Our calculations show that there exists an additional fixed point that governs scaling behavior. Turbulent advection of a passive scalar (density) field by this velocity ensemble is considered as well. We demonstrate that various correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. The corresponding anomalous exponents, identified as scaling dimensions of certain composite fields, can be systematically calculated as a series in y and . All calculations are performed in the leading one-loop approximation. © 2017 American Physical Society

    Turbulent compressible fluid: Renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields

    No full text
    We study a model of fully developed turbulence of a compressible fluid, based on the stochastic Navier-Stokes equation, by means of the field-theoretic renormalization group. In this approach, scaling properties are related to the fixed points of the renormalization group equations. Previous analysis of this model near the real-world space dimension 3 identified a scaling regime [N. V. Antonov, Theor. Math. Phys. 110, 305 (1997)TMPHAH0040-577910.1007/BF02630456]. The aim of the present paper is to explore the existence of additional regimes, which could not be found using the direct perturbative approach of the previous work, and to analyze the crossover between different regimes. It seems possible to determine them near the special value of space dimension 4 in the framework of double y and expansion, where y is the exponent associated with the random force and =4-d is the deviation from the space dimension 4. Our calculations show that there exists an additional fixed point that governs scaling behavior. Turbulent advection of a passive scalar (density) field by this velocity ensemble is considered as well. We demonstrate that various correlation functions of the scalar field exhibit anomalous scaling behavior in the inertial-convective range. The corresponding anomalous exponents, identified as scaling dimensions of certain composite fields, can be systematically calculated as a series in y and . All calculations are performed in the leading one-loop approximation. © 2017 American Physical Society

    Passive advection of a vector field: Effects of strong compressibility

    No full text
    The field theoretic renormalization group and the operator product expansion are applied to the stochastic model of a passively advected vector field. The advecting velocity field is generated by the stochastic Navier-Stokes equation with compressibility taken into account. The model is considered in the vicinity of space dimension d = 4 and the perturbation theory is constructed within a double expansion scheme in y and ϵ = 4 - d, where y describes scaling behaviour of the random force that enters a stochastic equation for the velocity field. We show that the correlation functions of the passive vector field in the inertial range exhibit anomalous scaling behaviour. The critical dimensions of tensor composite operators of passive vector field are calculated in the leading order of y, ϵ expansion

    Spectral estimates for resolvent differences of self-adjoint elliptic operators

    Get PDF
    The concept of quasi boundary triples and Weyl functions from extension theory of symmetric operators in Hilbert spaces is developed further and spectral estimates for resolvent differences of two self-adjoint extensions in terms of general operator ideals are proved. The abstract results are applied to self-adjoint realizations of second order elliptic differential operators on bounded and exterior domains, and partial differential operators with δ-potentials supported on hypersurfaces are studied
    corecore