9 research outputs found

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T \sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm2^{-2} s1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T \sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-

    Superflares on Giant Stars

    No full text
    The Kepler mission identified huge flares on various stars including some of solar type. These events are substantially more energetic than solar flares, and so they are referred to as superflares. Even a small probability of such a superflare on the Sun would be a menace to modern society. A flare comparable in energy with that of superflares was observed on 24th and 25th September on the binary HK Lac. Unlike the Kepler stars, there are observations of differential rotation for HK Lac. This differential rotation appears to be anti-solar. For anti-solar differential rotation, dynamo models can give magnetic activity waves of dipole symmetry as well as quasi-stationary magnetic configurations with quadrupole symmetry. The magnetic energy of such stationary configurations is usually about two orders of magnitude higher than that associated with activity waves. We believe that this mechanism could provide sufficient energy to produce superflares on late type stars, and present some simple models in support of this idea.Comment: 7 pages, 3 figures, 1 table. Accepted to Astronomy Reports, 2018, Vol.62, No.

    Observing Dynamos in Cool Stars

    No full text
    The main aim of this paper is to introduce the most important observables that help us to investigate stellar dynamos and compare those to the modeling results. We give an overview of the available observational methods and data processing techniques that are suitable for such purposes, with touching upon examples of inadequate interpretations as well. Stellar observations are compared to the solar data in such a way, which ensures that the measurements are comparable in dimension, wavelength, and timescale. A brief outlook is given to the future plans and possibilities. A thorough review of this topic was published nearly a decade ago (Berdyugina 2005), now we focus on the experience that have been gathered since that time.Comment: 47 pages, accepted for publication in Space Science Review

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    No full text
    corecore