561 research outputs found

    Ruppeiner Geometry of RN Black Holes: Flat or Curved?

    Full text link
    In some recent studies \cite{aman1, aman2, aman3}, Aman {\it et al.} used the Ruppeiner scalar as a measure of underlying interactions of Reissner-Nordstr\"{o}m black holes, indicating that it is a non-interacting statistical system for which classical thermodynamics could be used at any scale. Here, we show that if we use the complete set of thermodynamic variables, a non-flat state space will be produced. Furthermore, the Ruppeiner curvature diverges at extremal limits, as it would for other types of black holes.Comment: 9 page

    Supernovae as a probe of particle physics and cosmology

    Get PDF
    It has very recently been demonstrated by Csaki, Kaloper and Terning (CKT) that the faintness of supernovae at high redshift can be accommodated by mixing of a light axion with the photon in the presence of an intergalactic magnetic field, as opposed to the usual explanation of an accelerating universe by a dark energy component. In this paper we analyze further aspects of the CKT mechanism and its generalizations. The CKT mechanism also passes various cosmological constraints from the fluctuations of the CMB and the formation of structure at large scales, without requiring an accelerating phase in the expansion of the Universe. We investigate the statistical significance of current supernova data for pinning down the different components of the cosmological energy-momentum tensor and for probing physics beyond the standard models.Comment: 17 pages, LaTeX, 4 figures; v2: typos corrected, minor changes, references added; v3: updated figures, details regarding fits include

    Breaking CPT by mixed non-commutativity

    Get PDF
    The mixed component of the non-commutative parameter \theta_{\mu M}, where \mu = 0,1,2,3 and M is an extra dimensional index may violate four-dimensional CPT invariance. We calculate one and two-loop induced couplings of \theta_{\mu 5} with the four-dimensional axial vector current and with the CPT odd dim=6 operators starting from five-dimensional Yukawa and U(1) theories. The resulting bounds from clock comparison experiments place a stringent constraint on \theta_{\mu 5}, |\theta_{\mu 5}|^{-1/2} > 5\times 10^{11} GeV. The orbifold projection and/or localization of fermions on a 3-brane lead to CPT-conserving physics, in which case the constraints on \theta{\mu 5} are softened.Comment: 4 pages, latex, 1 figur

    Time-Space Noncommutativity in Gravitational Quantum Well scenario

    Get PDF
    A novel approach to the analysis of the gravitational well problem from a second quantised description has been discussed. The second quantised formalism enables us to study the effect of time space noncommutativity in the gravitational well scenario which is hitherto unavailable in the literature. The corresponding first quantized theory reveals a leading order perturbation term of noncommutative origin. Latest experimental findings are used to estimate an upper bound on the time--space noncommutative parameter. Our results are found to be consistent with the order of magnitude estimations of other NC parameters reported earlier.Comment: 7 pages, revTe

    Propagators and WKB-exactness in the plane wave limit of AdSxS

    Full text link
    Green functions for the scalar, spinor and vector fields in a plane wave geometry arising as a Penrose limit of AdS×SAdS\times S are obtained. The Schwinger-DeWitt technique directly gives the results in the plane wave background, which turns out to be WKB-exact. Therefore the structural similarity with flat space results is unveiled. In addition, based on the local character of the Penrose limit, it is claimed that for getting the correct propagators in the limit one can rely on the first terms of the direct geodesic contribution in the Schwinger-DeWitt expansion of the original propagators . This is explicitly shown for the Einstein Static Universe, which has the same Penrose limit as AdS×SAdS\times S with equal radii, and for a number of other illustrative cases.Comment: 18 pages, late

    Probing Noncommutative Space-Time in the Laboratory Frame

    Get PDF
    The phenomenological investigation of noncommutative space-time in the laboratory frame are presented. We formulate the apparent time variation of noncommutativity parameter θμν\theta_{\mu\nu} in the laboratory frame due to the earth's rotation. Furthermore, in the noncommutative QED, we discuss how to probe the electric-like component θE=(θ01,θ02,θ03)\overrightarrow{\theta_{E}}=(\theta_{01},\theta_{02},\theta_{03}) by the process ee+γγe^-e^+\to\gamma\gamma at future ee+e^-e^+ linear collider. We may determine the magnitude and the direction of θE\overrightarrow{\theta_{E}} by detailed study of the apparent time variation of total cross section. In case of us observing no signal, the upper limit on the magnitude of θE\overrightarrow{\theta_E^{}} can be determined independently of its direction.Comment: 12 pages, 7 figures, typos are corrected, one graph have been added in figure

    "Dark energy" in the Local Void

    Full text link
    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (5×1015M\sim5\times10^{15}\,M_\odot) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.Comment: 6 pages, accepted as a Letter to the Editor by Astrophysics and Space Scienc

    Proportions of bird damage in tree fruits are higher in low-fruit-abundance contexts

    Get PDF
    Frugivorous birds impose significant costs on tree fruit growers through direct consumption of fruit and grower efforts to manage birds.We documented factors that influenced tree fruit bird damage from 2012 through 2014 with a coordinated field study in Michigan, New York, and Washington. For sweet cherries, percent bird damage was higher in 2012 compared to 2013 and 2014, in Michigan and New York compared toWashington, and in blocks with more edges adjacent to non-sweet cherry land-cover types. These patterns appeared to be associated with fruit abundance patterns; 2012 was a particularly lowyield year for tree fruits in Michigan and New York and percent bird damage was high. In addition, percent bird damage to sweet and tart cherries in Michigan was higher in landscapes with low to moderate forest cover compared to higher forest cover landscapes. \u27Honeycrisp\u27 apple blocks under utility wires were marginally more likely to have greater bird damage compared to blocks without wires. We recommend growers prepare bird management plans that consider the spatial distribution of fruit and non-fruit areas of the farm. Growers should generally expect to invest more in bird management in low-yield years, in blocks isolated from other blocks of the same crop, and in blocks where trees can provide entry to the crop for frugivorous birds

    Investigation of the high momentum component of nuclear wave function using hard quasielastic A(p,2p)X reactions

    Get PDF
    We present theoretical analysis of the first data on the high energy and momentum transfer (hard) quasielastic C(p,2p)XC(p,2p)X reactions. The cross section of hard A(p,2p)XA(p,2p)X reaction is calculated within the light-cone impulse approximation based on two-nucleon correlation model for the high-momentum component of the nuclear wave function. The nuclear effects due to modification of the bound nucleon structure, soft nucleon-nucleon reinteraction in the initial and final states of the reaction with and without color coherence have been considered. The calculations including these nuclear effects show that the distribution of the bound proton light-cone momentum fraction (α)(\alpha) shifts towards small values (α<1\alpha < 1), effect which was previously derived only within plane wave impulse approximation. This shift is very sensitive to the strength of the short range correlations in nuclei. Also calculated is an excess of the total longitudinal momentum of outgoing protons. The calculations are compared with data on the C(p,2p)XC(p,2p)X reaction obtained from the EVA/AGS experiment at Brookhaven National Laboratory. These data show α\alpha-shift in agreement with the calculations. The comparison allows also to single out the contribution from short-range nucleon correlations. The obtained strength of the correlations is in agreement with the values previously obtained from electroproduction reactions on nuclei.Comment: 30 pages LaTex file and 19 eps figure

    Noncommutative quantum mechanics and Bohm's ontological interpretation

    Full text link
    We carry out an investigation into the possibility of developing a Bohmian interpretation based on the continuous motion of point particles for noncommutative quantum mechanics. The conditions for such an interpretation to be consistent are determined, and the implications of its adoption for noncommutativity are discussed. A Bohmian analysis of the noncommutative harmonic oscillator is carried out in detail. By studying the particle motion in the oscillator orbits, we show that small-scale physics can have influence at large scales, something similar to the IR-UV mixing
    corecore