27 research outputs found

    The liquid-vapor interface of an ionic fluid

    Full text link
    We investigate the liquid-vapor interface of the restricted primitive model (RPM) for an ionic fluid using a density-functional approximation based on correlation functions of the homogeneous fluid as obtained from the mean-spherical approximation (MSA). In the limit of a homogeneous fluid our approach yields the well-known MSA (energy) equation of state. The ionic interfacial density profiles, which for the RPM are identical for both species, have a shape similar to those of simple atomic fluids in that the decay towards the bulk values is more rapid on the vapor side than on the liquid side. This is the opposite asymmetry of the decay to that found in earlier calculations for the RPM based on a square-gradient theory. The width of the interface is, for a wide range of temperatures, approximately four times the second moment correlation length of the liquid phase. We discuss the magnitude and temperature dependence of the surface tension, and argue that for temperatures near the triple point the ratio of the dimensionless surface tension and critical temperature is much smaller for the RPM than for simple atomic fluids.Comment: 6 postscript figures, submitted to Phys. Rev.

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7Ă—10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4Ă—10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4Ă—10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Modeling Fracture in Masonry

    No full text
    A finite element procedure developed for the study of fracture in concrete is extended for the simulation of tensile and/or shear fracture in masonry. Triangular units are grouped into rectangular zones mimicking brick units with surrounding mortar joints. Fracture is captured through a constitutive softening-fracture law at the boundary interface nodes. The mortar joint, which is a plane of weakness, can be modeled as an interface of zero thickness or of a given thickness. At each nodal location, there exist essentially two nodes, the relative displacement i.e., crack opening or sliding of which is related to the conjugate internodal force by the appropriate softening relationship. The model is ideally suited to the modeling of fracture in masonry because fracture usually runs along a horizontal or vertical joint in the mortar or is approximately vertical in the brick unit. The inelastic failure properties are divided into those for the mortar joints and those for fracture within the brick units. The inelastic failure surface is modeled using a Mohr\u2013Coulomb failure surface with a tension cut-off. Examples which include: Direct tension, microshear, and three-point bending of masonry panels are used to verify the formulation
    corecore