25 research outputs found

    The Baryon-Dark Matter Ratio Via Moduli Decay After Affleck-Dine Baryogenesis

    Get PDF
    Low-scale supersymmetry breaking in string motivated theories implies the presence of O(100) TeV scale moduli, which generically lead to a significant modification of the history of the universe prior to Big Bang Nucleosynthesis. Such an approach implies a non-thermal origin for dark matter resulting from scalar decay, where the lightest supersymmetric particle can account for the observed dark matter relic density. We study the further effect of the decay on the baryon asymmetry of the universe, and find that this can satisfactorily address the problem of the over-production of the baryon asymmetry by the Affleck-Dine mechanism in the MSSM. Remarkably, there is a natural connection between the baryon and dark matter abundances today, which leads to a solution of the `Cosmic Coincidence Problem'.Comment: 12 pages, no figure. v2: references adde

    Relic Abundance of Asymmetric Dark Matter

    Full text link
    We investigate the relic abundance of asymmetric Dark Matter particles that were in thermal equilibrium in the early universe. The standard analytic calculation of the symmetric Dark Matter is generalized to the asymmetric case. We calculate the asymmetry required to explain the observed Dark Matter relic abundance as a function of the annihilation cross section. We show that introducing an asymmetry always reduces the indirect detection signal from WIMP annihilation, although it has a larger annihilation cross section than symmetric Dark Matter. This opens new possibilities for the construction of realistic models of MeV Dark Matter.Comment: 20 pages, 11 figures, Accepted by JCA

    Measuring tau-polarisation in Neutralino2 decays at the LHC

    Full text link
    We show how the sum of the two average tau polarisations in the decay chain chi20 -> stau1 tau -> tau tau chi10 in minimal supersymmetry with conserved R-parity can be measured at the LHC. This is accomplished by exploiting the polarisation dependence of the visible di-tau mass spectrum. Such a measurement provides information on the couplings of the involved SUSY particles and allows a more precise determination of the di-tau mass endpoint. If different tau decay modes can be distinguished, the polarisation and endpoint measurement can be improved even further.Comment: 16 pages, 9 figures, minor change

    On Adler-Bell-Jackiw Anomaly in 3-brane Scenario

    Full text link
    We investigate the ABJ anomaly in the framework of an effective field theory for a 3-brane scenario and show that the contribution from induced gravity on the brane depends on both the topological structure of the bulk space-time and the embedding of the brane in the bulk. This fact implies the existence of a non-trivial vacuum structure of bulk quantum gravity. Furthermore, we argue that this axial gravitational anomaly may not necessarily be cancelled by choosing the matter content on the brane since it could be considered as a possible effect from bulk quantum gravity.Comment: 17 pages, RevTex, no figures. Some further misprints are correcte

    General Axisymmetric Solutions and Self-Tuning in 6D Chiral Gauged Supergravity

    Full text link
    We re-examine the properties of the axially-symmetric solutions to chiral gauged 6D supergravity, recently found in refs. hep-th/0307238 and hep-th/0308064. Ref. hep-th/0307238 finds the most general solutions having two singularities which are maximally-symmetric in the large 4 dimensions and which are axially-symmetric in the internal dimensions. We show that not all of these solutions have purely conical singularities at the brane positions, and that not all singularities can be interpreted as being the bulk geometry sourced by neutral 3-branes. The subset of solutions for which the metric singularities are conical precisely agree with the solutions of ref. hep-th/0308064. Establishing this connection between the solutions of these two references resolves a minor conflict concerning whether or not the tensions of the resulting branes must be negative. The tensions can be both negative and positive depending on the choice of parameters. We discuss the physical interpretation of the non-conical solutions, including their significance for the proposal for using 6-dimensional self-tuning to understand the small size of the observed vacuum energy. In passing we briefly comment on a recent paper by Garriga and Porrati which criticizes the realization of self-tuning in 6D supergravity.Comment: 27 pages, 1 figure; JHEP3 style; Some references added, and discussion of tension constraints and unwarped solutions made more explici

    Neutrino Masses, Baryon Asymmetry, Dark Matter and the Moduli Problem : A Complete Framework

    Full text link
    Recent developments in string theory have led to "realistic" string compactifications which lead to moduli stabilization while generating a hierarchy between the Electroweak and Planck scales at the same time. However, this seems to suggest a rethink of our standard notions of cosmological evolution after the end of inflation and before the beginning of BBN. We argue that within classes of realistic string compactifications, there generically exists a light modulus with a mass comparable to that of the gravitino which generates a large late-time entropy when it decays. Therefore, all known mechanisms of generating the baryon asymmetry of the Universe in the literature have to take this fact into account. In this work, we find that it is still possible to naturally generate the observed baryon asymmetry of the Universe as well as light left-handed neutrino masses from a period of Affleck-Dine(AD) leptogenesis shortly after the end of inflation, in classes of realistic string constructions with a minimal extension of the MSSM below the unification scale (consisting only of right-handed neutrinos) and satisfying certain microscopic criteria described in the text. The consequences are as follows. The lightest left-handed neutrino is required to be virtually massless. The moduli (gravitino) problem can be naturally solved in this framework both within gravity and gauge mediation. The observed upper bound on the relic abundance constrains the moduli-matter and moduli-gravitino couplings since the DM is produced non-thermally within this framework. Finally, although not a definite prediction, the framework naturally allows a light right-handed neutrino and sneutrinos around the electroweak scale which could have important implications for DM as well as the LHC.Comment: 41 pages, no figures, journal version adde

    Exploring nu signals in dark matter detectors

    Full text link
    We investigate standard and non-standard solar neutrino signals in direct dark matter detection experiments. It is well known that even without new physics, scattering of solar neutrinos on nuclei or electrons is an irreducible background for direct dark matter searches, once these experiments each the ton scale. Here, we entertain the possibility that neutrino interactions are enhanced by new physics, such as new light force carriers (for instance a "dark photon") or neutrino magnetic moments. We consider models with only the three standard neutrino flavors, as well as scenarios with extra sterile neutrinos. We find that low-energy neutrino--electron and neutrino--nucleus scattering rates can be enhanced by several orders of magnitude, potentially enough to explain the event excesses observed in CoGeNT and CRESST. We also investigate temporal modulation in these neutrino signals, which can arise from geometric effects, oscillation physics, non-standard neutrino energy loss, and direction-dependent detection efficiencies. We emphasize that, in addition to providing potential explanations for existing signals, models featuring new physics in the neutrino sector can also be very relevant to future dark matter searches, where, on the one hand, they can be probed and constrained, but on the other hand, their signatures could also be confused with dark matter signals.Comment: 38 pages, 8 figures, 1 table; v3: eq 3 and nuclear recoil plots corrected, footnote added, conclusions unchange

    Affleck-Dine dynamics and the dark sector of pangenesis

    Full text link
    Pangenesis is the mechanism for jointly producing the visible and dark matter asymmetries via Affleck-Dine dynamics in a baryon-symmetric universe. The baryon-symmetric feature means that the dark asymmetry cancels the visible baryon asymmetry and thus enforces a tight relationship between the visible and dark matter number densities. The purpose of this paper is to analyse the general dynamics of this scenario in more detail and to construct specific models. After reviewing the simple symmetry structure that underpins all baryon-symmetric models, we turn to a detailed analysis of the required Affleck-Dine dynamics. Both gravity-mediated and gauge-mediated supersymmetry breaking are considered, with the messenger scale left arbitrary in the latter, and the viable regions of parameter space are determined. In the gauge-mediated case where gravitinos are light and stable, the regime where they constitute a small fraction of the dark matter density is identified. We discuss the formation of Q-balls, and delineate various regimes in the parameter space of the Affleck-Dine potential with respect to their stability or lifetime and their decay modes. We outline the regions in which Q-ball formation and decay is consistent with successful pangenesis. Examples of viable dark sectors are presented, and constraints are derived from big bang nucleosynthesis, large scale structure formation and the Bullet cluster. Collider signatures and implications for direct dark matter detection experiments are briefly discussed. The following would constitute evidence for pangenesis: supersymmetry, GeV-scale dark matter mass(es) and a Z' boson with a significant invisible width into the dark sector.Comment: 51 pages, 7 figures; v2: minor modifications, comments and references added; v3: minor changes, matches published versio

    Supersymmetric Relations Among Electromagnetic Dipole Operators

    Full text link
    Supersymmetric contributions to all leptonic electromagnetic dipole operators have essentially identical diagramatic structure. With approximate slepton universality this allows the muon anomalous magnetic moment to be related to the electron electric dipole moment in terms of supersymmetric phases, and to radiative flavor changing lepton decays in terms of small violations of slepton universality. If the current discrepancy between the measured and Standard Model values of the muon anomalous magnetic moment is due to supersymmetry, the current bound on the electron electric dipole moment then implies that the phase of the electric dipole operator is less than 2×10−32 \times 10^{-3}. Likewise the current bound on Ό→eÎł\mu \to e \gamma decay implies that the fractional selectron-smuon mixing in the left-left mass squared matrix, \delta m_{\smuon \selectron}^2 / m_{\slepton}^2, is less than 10−410^{-4}. These relations and constraints are fairly insensitive to details of the superpartner spectrum for moderate to large tan⁥ÎČ\tan \beta.Comment: Latex, 38 pages, 2 figure

    Oscillating Asymmetric Dark Matter

    Get PDF
    We study the dynamics of dark matter (DM) particle-antiparticle oscillations within the context of asymmetric DM. Oscillations arise due to small DM number-violating Majorana-type mass terms, and can lead to recoupling of annihilation after freeze-out and washout of the DM density. We derive the density matrix equations for DM oscillations and freeze-out from first principles using nonequilibrium field theory, and our results are qualitatively different than in previous studies. DM dynamics exhibits particle-vs-antiparticle "flavor" effects, depending on the interaction type, analogous to neutrino oscillations in a medium. "Flavor-sensitive" DM interactions include scattering or annihilation through a new vector boson, while "flavor-blind" interactions include scattering or s-channel annihilation through a new scalar boson, or annihilation to pairs of bosons. In particular, we find that flavor-sensitive annihilation does not recouple when coherent oscillations begin, and that flavor-blind scattering does not lead to decoherence.Comment: 23 pages, 4 figures, A typo fixed, References adde
    corecore