6 research outputs found

    Synthesis of graphene flakes over recovered copper etched in ammonium persulfate solution

    Get PDF
    The synthesis of high quality graphene via economic way is highly desirable for practical applications. In this study, graphene flake was successfully synthesized on Cu/MgO catalyst derived from recovered Cu via etching in ammonium persulfate solution. Recovered Cu acted as efficient active metal in Cu/MgO catalyst with good crystal structure and composition according to XRD and XRF results. FESEM, EDX, HRTEM, Raman spectroscopy and SAED analysis were carried out on the synthesized graphene. The formation of single, bilayer and few layer of graphene from Cu/MgO catalyst derived from recovered Cu was feasible

    Search for narrow resonances in the <math display="inline"><mi>b</mi></math>-tagged dijet mass spectrum in proton-proton collisions at <math display="inline"><msqrt><mi>s</mi></msqrt><mo>=</mo><mn>13</mn><mtext> </mtext><mtext> </mtext><mi>TeV</mi></math>

    No full text
    International audienceA search is performed for narrow resonances decaying to final states of two jets, with at least one jet originating from a b quark, in proton-proton collisions at s=13  TeV. The data set corresponds to an integrated luminosity of 138  fb-1 collected with the CMS detector at the LHC. Jets originating from energetic b hadrons are identified through a b-tagging algorithm that utilizes a deep neural network or the presence of a muon inside a jet. The invariant mass spectrum of jet pairs is well described by a smooth parametrization and no evidence for the production of new particles is observed. Upper limits on the production cross section are set for excited b quarks and other resonances decaying to dijet final states containing b quarks. These limits exclude at 95% confidence level models of Z′ bosons with masses from 1.8 TeV to 2.4 TeV and of excited b quarks with masses from 1.8 TeV to 4.0 TeV. This is the most stringent exclusion of excited b quarks to date

    Azimuthal Correlations within Exclusive Dijets with Large Momentum Transfer in Photon-Lead Collisions

    No full text
    International audienceThe structure of nucleons is multidimensional and depends on the transverse momenta, spatial geometry, and polarization of the constituent partons. Such a structure can be studied using high-energy photons produced in ultraperipheral heavy-ion collisions. The first measurement of the azimuthal angular correlations of exclusively produced events with two jets in photon-lead interactions at large momentum transfer is presented, a process that is considered to be sensitive to the underlying nuclear gluon polarization. This study uses a data sample of ultraperipheral lead-lead collisions at sNN=5.02  TeV, corresponding to an integrated luminosity of 0.38  nb-1, collected with the CMS experiment at the LHC. The measured second harmonic of the correlation between the sum and difference of the two jet transverse momentum vectors is found to be positive, and rising, as the dijet transverse momentum increases. A well-tuned model that has been successful at describing a wide range of proton scattering data from the HERA experiments fails to describe the observed correlations, suggesting the presence of gluon polarization effects

    Search for heavy resonances and quantum black holes in eμ\mu, eτ\tau, and μτ\mu\tau final states in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    A search is reported for heavy resonances and quantum black holes decaying into eμ\mu, eτ\tau, and μτ\mu\tau final states in proton-proton collision data recorded by the CMS experiment at the CERN LHC during 2016-2018 at s=\sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. The eμ\mu, eτ\tau, and μτ\mu\tau invariant mass spectra are reconstructed, and no evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on the product of the cross section and branching fraction for lepton flavor violating signals. Three benchmark signals are studied: resonant τ\tau sneutrino production in RR parity violating supersymmetric models, heavy Z' gauge bosons with lepton flavor violating decays, and nonresonant quantum black hole production in models with extra spatial dimensions. Resonant τ\tau sneutrinos are excluded for masses up to 4.2 TeV in the eμ\mu channel, 3.7 TeV in the eτ\tau channel, and 3.6 TeV in the μτ\mu\tau channel. A Z' boson with lepton flavor violating couplings is excluded up to a mass of 5.0 TeV in the eμ\mu channel, up to 4.3 TeV in the eτ\tau channel, and up to 4.1 TeV in the μτ\mu\tau channel. Quantum black holes in the benchmark model are excluded up to the threshold mass of 5.6 TeV in the eμ\mu channel, 5.2 TeV in the eτ\tau channel, and 5.0 TeV in the μτ\mu\tau channel. In addition, model-independent limits are extracted to allow comparisons with other models for the same final states and similar event selection requirements. The results of these searches provide the most stringent limits available from collider experiments for heavy particles that undergo lepton flavor violating decays.A search is reported for heavy resonances and quantum black holes decaying into eμ, eτ, and μτ final states in proton-proton collision data recorded by the CMS experiment at the CERN LHC during 2016–2018 at s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{−1}. The eμ, eτ, and μτ invariant mass spectra are reconstructed, and no evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on the product of the cross section and branching fraction for lepton flavor violating signals. Three benchmark signals are studied: resonant τ sneutrino production in R parity violating supersymmetric models, heavy Z′ gauge bosons with lepton flavor violating decays, and nonresonant quantum black hole production in models with extra spatial dimensions. Resonant τ sneutrinos are excluded for masses up to 4.2TeV in the eμ channel, 3.7TeV in the eτ channel, and 3.6TeV in the μτ channel. A Z′ boson with lepton flavor violating couplings is excluded up to a mass of 5.0TeV in the eμ channel, up to 4.3Te V in the eτ channel, and up to 4.1TeV in the μτ channel. Quantum black holes in the benchmark model are excluded up to the threshold mass of 5.6TeV in the eμ channel, 5.2TeV in the eτ channel, and 5.0TeV in the μτ channel. In addition, model-independent limits are extracted to allow comparisons with other models for the same final states and similar event selection requirements. The results of these searches provide the most stringent limits available from collider experiments for heavy particles that undergo lepton flavor violating decays.[graphic not available: see fulltext]A search is reported for heavy resonances and quantum black holes decaying into eμ\mu, eτ\tau, and μτ\mu\tau final states in proton-proton collision data recorded by the CMS experiment at the CERN LHC during 2016-2018 at s\sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. The eμ\mu, eτ\tau, and μτ\mu\tau invariant mass spectra are reconstructed, and no evidence is found for physics beyond the standard model. Upper limits are set at 95% confidence level on the product of the cross section and branching fraction for lepton flavor violating signals. Three benchmark signals are studied: resonant τ\tau sneutrino production in RR parity violating supersymmetric models, heavy Z' gauge bosons with lepton flavor violating decays, and nonresonant quantum black hole production in models with extra spatial dimensions. Resonant τ\tau sneutrinos are excluded for masses up to 4.2 TeV in the eμ\mu channel, 3.7 TeV in the eτ\tau channel, and 3.6 TeV in the μτ\mu\tau channel. A Z' boson with lepton flavor violating couplings is excluded up to a mass of 5.0 TeV in the eμ\mu channel, up to 4.3 TeV in the eτ\tau channel, and up to 4.1 TeV in the μτ\mu\tau channel. Quantum black holes in the benchmark model are excluded up to the threshold mass of 5.6 TeV in the eμ\mu channel, 5.2 TeV in the eτ\tau channel, and 5.0 TeV in the μτ\mu\tau channel. In addition, model-independent limits are extracted to allow comparisons with other models for the same final states and similar event selection requirements. The results of these searches provide the most stringent limits available from collider experiments for heavy particles that undergo lepton flavor violating decays

    Strange hadron collectivity in pPb and PbPb collisions

    No full text
    International audienceThe collective behavior of KS0 {\textrm{K}}_{\textrm{S}}^0 and Λ/Λ \Lambda /\overline{\Lambda} strange hadrons is studied by measuring the elliptic azimuthal anisotropy (v2_{2}) using the scalar-product and multiparticle correlation methods. Proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy sNN \sqrt{s_{\textrm{NN}}} = 8.16 TeV and lead-lead (PbPb) collisions at sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV collected by the CMS experiment at the LHC are investigated. Nonflow effects in the pPb collisions are studied by using a subevent cumulant analysis and by excluding events where a jet with transverse momentum greater than 20 GeV is present. The strange hadron v2_{2} values extracted in pPb collisions via the four- and six-particle correlation method are found to be nearly identical, suggesting the collective behavior. Comparisons of the pPb and PbPb results for both strange hadrons and charged particles illustrate how event-by-event flow fluctuations depend on the system size.[graphic not available: see fulltext
    corecore