5 research outputs found

    Evolution of Microstructure in a Low-Si Micro-alloyed Steel Processed Through One-Step Quenching and Partitioning

    No full text
    An attempt has been made in the current study to investigate the possibility of austenite retention in 0.5 wt pct Si steel without Al, processed through the one-step Q&P technique. The XRD and microstructural analysis confirmed austenite retention (maximum of 5.73 卤 0.16 vol pct), which showed thin film and blocky morphologies. The experimental amount of retained austenite was found to increase with the increasing quench temperature; however, it was almost independent of partitioning time. The carbon content in the retained austenite did not show any significant variation, after Q&P treatment for different time鈥搕emperature combinations. The hardness was found to be sensitive to quench temperature than the partitioning time

    Denuded zones, diffusional creep, and grain boundary sliding

    No full text
    The appearance of denuded zones following low stress creep in particle-containing crystalline materials is both a microstructural prediction and observation often cited as irrefutable evidence for the Nabarro-Herring (N-H) mechanism of diffusional creep. The denuded zones are predicted to be at grain boundaries that are orthogonal to the direction of the applied stress. Furthermore, their dimensions should account for the accumulated plastic flow. In the present article, the evidence for such denuded zones is critically examined. These zones have been observed during creep of magnesium, aluminum, and nickel-base alloys. The investigation casts serious doubts on the apparently compelling evidence for the link between denuded zones and diffusional creep. Specifically, denuded zones are clearly observed under conditions that are explicitly not diffusional creep. Additionally, the denuded zones are often found in directions that are not orthogonal to the applied stress. Other mechanisms that can account for the observations of denuded zones are discussed. It is proposed that grain boundary sliding accommodated by slip is the rate-controlling process in the stress range where denuded zones have been observed. It is likely that the denuded zones are created by dissolution of precipitates at grain boundaries that are simultaneously sliding and migrating during creep.Peer reviewe

    Artificial intelligence in drug design

    No full text
    corecore